Coverart for item
The Resource Wireless Power Transfer, 2nd Edition

Wireless Power Transfer, 2nd Edition

Label
Wireless Power Transfer, 2nd Edition
Title
Wireless Power Transfer, 2nd Edition
Creator
Contributor
Subject
Genre
Language
eng
Member of
Cataloging source
MiAaPQ
Literary form
non fiction
Nature of contents
dictionaries
Series statement
River Publishers Series in Communications
Label
Wireless Power Transfer, 2nd Edition
Link
http://ebookcentral.proquest.com/lib/multco/detail.action?docID=4509482
Instantiates
Publication
Copyright
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Cover -- Title - Wireless Power Transfer 2nd Edition -- Series Page -- Half Title - Wireless Power Transfer 2nd Edition -- Copy Right Page -- Contents -- Preface -- Acknowledgment -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- Chapter 1 - Power Transfer by Magnetic Induction Using Coupled-Mode Theory -- 1.1 Introduction -- 1.2 Series-Series Resonators Inductively Coupled -- 1.2.1 Analysis by the Circuit Theory -- 1.2.2 Analysis by the Coupled-Mode Theory -- 1.2.3 Transfer Power Computation -- 1.2.4 Remark -- 1.3 Mutual Inductance Computation -- 1.4 Efficiency of the Active Power Transffer -- 1.4.1 Scattering Parameters S -- 1.4.2 Efficiency Computation -- 1.5 Some Procedures for Optimal Wireless Energy Transfer Systems -- 1.5.1 Indroduction -- 1.5.2 Optimal Parameter Computing Performance Optimization of Magnetic Coupled Resonators -- 1.5.3 Remarks -- 1.6 Conclusions -- 1.7 Problems -- 1.8 Solutions to Problems -- References -- Chapter 2 - Efficient Wireless Power Transfer based on Strongly Coupled Magnetic Resonance -- 2.1 Introduction -- 2.2 Interaction in Lossless Physical System -- 2.3 Interaction in Real Two-Resonator Physical System -- 2.3.1 Fully Resonant Case -- 2.3.1.1 Strong coupling k /√ΓSΓD >> 1 -- 2.3.1.2 Weak coupling k /√ΓSΓD ≈ 1 or k /√ΓSΓD < 1 -- 2.3.2 General Non-Resonant Case -- 2.4 Relay Effect of Wireless Power Transfer -- 2.4.1 Relay Effect -- 2.4.2 Time-Domain Comparison between Relayed and Original Witricity Systems -- 2.5 Wireless Power Transfer with Multiple Resonators -- 2.5.1 General Solution for Multiple Relays -- 2.5.2 Inline Relay(s) -- 2.5.2.1 One relay -- 2.5.2.2 Two relays -- 2.5.2.3 Spectral analysis of energy exchanges -- 2.5.3 Optimization of 2D WPTN Scheme -- 2.5.3.1 Case 1 with two relays -- 2.5.3.2 Case 2 with two relays
  • 2.5.3.3 Spectral analysis of energy exchanges -- 2.6 Prototype of Wireless Power Transfer -- 2.6.1 Cylindrical Resonator Design -- 2.6.2 Implementation of Cylindrical Resonator -- 2.6.3 Evaluation of Cylindrical Resonator -- 2.6.4 Application of Cylindrical Resonator -- 2.7 Discussion -- 2.8 Conclusions -- References -- Chapter 3 - Low Power Rectenna Systems for Wireless Energy Transfer -- 3.1 Introduction -- 3.1.1 History of Wireless Power Transfer -- 3.1.2 Wireless Power Transfer Techniques -- 3.1.2.1 DC-RF conversion -- 3.1.2.2 Electromagnetic wave propagation -- 3.1.2.3 RF-DC conversion -- 3.2 Low Power Rectenna Topologies -- 3.2.1 Circuit Topologies -- 3.2.1.1 Series-mounted diode -- 3.2.1.2 Shunt-mounted diode -- 3.2.1.3 Voltage-doubler topology -- 3.2.1.4 Diode bridge topology -- 3.2.1.5 Transistor-based rectennas -- 3.2.2 Rectenna Associations -- 3.2.3 Modeling a Rectenna -- 3.2.4 A Designer's Dilemma -- 3.2.4.1 Output characteristics -- 3.2.4.2 Antenna impedance influence -- 3.3 Reconfigurable Electromagnetic Energy Receiver -- 3.3.1 Typical Application -- 3.3.2 Rectenna Circuit Configuration -- 3.3.3 Reconfigurable Architecture -- 3.3.3.1 Antenna switch -- 3.3.3.2 Global performance -- 3.3.3.3 Output load matching -- 3.4 Conclusions -- References -- Chapter 4 - Wireless Power Transfer: Generation,Transmission, and Distribution Circuit Theory of Wireless Power Transfer -- 4.1 Introduction -- 4.2 Criteria for Efficient Resonant Wireless Power Transfer -- 4.2.1 High Power Factor (cos θ = 1) -- 4.2.2 High Coupling Coefficient (k ≈ 1) -- 4.2.3 High Quality (Q >> 1) Factors -- 4.2.4 Matching Circuits -- 4.2.5 Focusing of Magnetic Field -- 4.3 Resonant Wireless Power Transfer -- 4.3.1 Higher-Order WPT Systems -- 4.4 Loosely Coupled Wireless Power Transfer System -- 4.4.1 Low Q1 and Q2 -- 4.4.2 High Q1 and Q2 -- 4.5 Efficiency -- 4.6 Summary
  • Chapter 5 - Inductive Wireless Power Transfer Using Circuit Theory -- 5.1 Introduction -- 5.2 Advantages of Inductive Coupling for Energy Transfer -- 5.3 Applications of Inductive Power Transfer -- 5.4 Fundamentals of Inductive Coupling -- 5.4.1 Inductive Coupling and Transformer Action -- 5.4.2 Resonant Circuit Topologies -- 5.4.3 Power Transfer across a Poorly Coupled Link -- 5.4.4 Near-and Far-Field Regions -- 5.4.5 The Importance of the Loop Antenna -- 5.4.6 Small Loop of Constant Current -- 5.4.7 The Loop in Transmitting Mode -- 5.4.8 The Loop in the Receiving Mode -- 5.5 Mutual Inductance of Coupled Coils -- 5.6 The Loosely Coupled Approximation -- 5.7 Summary -- References -- Chapter 6 - Recent Advances on Magnetic Resonant Wireless Power Transfer -- 6.1 Introduction -- 6.2 Coupled Inductors -- 6.2.1 Coupled Inductors -- 6.2.2 The Series Resonant Circuit -- 6.2.3 Adding Resonators to the Coupled Inductors -- 6.2.4 Maximum Efficiency, Maximum Power on the load,and Conjugate Matching:Two-Port Case -- 6.2.5 Maximum Efficiency: N-port Case -- 6.2.6 Scattering Matrix Representation of a Wireless Power Transfer Network -- 6.3 Four Coupled Resonators -- 6.4 Travelling Waves, Power Waves and Conjugate Image Impedances -- 6.4.1 TravellingWaves and Power Waves -- 6.4.2 Conjugate Image Impedances -- 6.5 Measurement of the Resonator Quality Factor -- 6.6 Examples of Coupled Resonators for WPT -- 6.7 Design of the Oscillator Powering the Resonant Link -- 6.8 Conclusions -- 6.9 Exercises -- 6.9.1 MATLAB function for single-loop inductance computation -- 6.9.2 MATLAB function for two coaxial conducting loops mutual inductance computation -- References -- Chapter 7 - Techniques for Optimal Wireless Power Transfer Systems -- 7.1 Introduction -- 7.2 Flux Conentrators -- 7.2.1 Splitting of Coupling Coefficients -- 7.2.2 Doubling of Coil Radius -- 7.3 Separators
  • 7.3.1 Simulations -- 7.3.2 Effect of Concentrator Quality Factor -- 7.3.3 Effect of Concentrator Radius -- 7.4 Approximate Magneto-Inductive Array Coupling Functions -- 7.4.1 System Specifications -- 7.4.2 Power Relations in Inductive Systems -- 7.4.3 Algorithm for Approximate Transfer Function -- 7.4.4 Interpretation of Algorithm -- 7.4.5 Correction Terms -- 7.5 Wireless Feedback Modelling -- 7.5.1 Wireless Feedback -- 7.5.2 Q-Based Explanation of Wireless Closed-Loop Transfer Function -- 7.6 Conclusions -- References -- Chapter 8 - Directional Tuning/Detuning Control of Wireless Power Pickups -- 8.1 Introduction -- 8.1.1 Shorting Control -- 8.1.2 Dynamic Tuning/Detuning Control -- 8.2 Directional Tuning/Detuning Control (DTDC) -- 8.2.1 Fundamentals of DTDC -- 8.2.2 Coarse-Tuning Stage -- 8.2.2.1 Coarse tuning in region A -- 8.2.2.2 Coarse tuning in region B -- 8.2.2.3 Coarse tuning in region C -- 8.2.2.4 Coarse tuning in region D -- 8.2.3 Fine-Tuning Stage -- 8.2.3.1 Fine-tuning between regions A and B -- 8.2.3.2 Fine-tuning between regions C and D -- 8.2.4 Design and Performance Considerations of DTDC -- 8.2.4.1 Category I -- 8.2.4.2 Category II -- 8.2.4.3 Category III -- 8.2.5 Standard Procedure of DTDC -- 8.3 DTDC-Controlled Parallel-Tuned LC Power Pickup -- 8.3.1 Fundamentals of Parallel-Tuned LC Power Pickup -- 8.3.2 Controllable Power Transfer Capacity of Parallel-Tuned LC Power Pickup -- 8.3.3 Effects of Parameter Variations on Output Voltage of Parallel-Tuned LC Power Pickup -- 8.3.4 Operating Frequency Variation -- 8.3.5 Magnetic Coupling Variation -- 8.3.6 Load Variation -- 8.3.7 Operating Range of Variable CS -- 8.3.7.1 Maximum required ratio (radj pv max) -- 8.3.7.2 Minimum required ratio (radj pv min) -- 8.3.8 Implementation of DTDC Controlled Parallel-Tuned LC Power Pickup -- 8.3.8.1 Selection of CS1 and CS2
  • 8.3.8.2 Equivalent Capacitance of CS2 -- 8.3.8.3 Integration of Control and ZVS Signals for Q1 and Q2 -- 8.4 Conclusions -- 8.5 Problems -- References -- Chapter 9 - Technology Overview and Concept of Wireless Charging Systems -- 9.1 Introduction -- 9.2 System Technology -- 9.2.1 Power Converter -- 9.2.2 Compensation Networks -- 9.2.3 Electromagnetic Structures -- 9.2.4 Power Conditioner -- 9.3 Applications -- 9.4 Development of Wireless Low-Power Transfer System -- 9.4.1 Methodology -- 9.4.1.1 Finite element formulation -- 9.4.2 D Planar Wireless Power Transfer System -- 9.4.2.1 Primary track loop -- 9.4.2.2 Pickup -- 9.4.3 Wireless Power Transfer System -- 9.4.3.1 Continuous mode of operation -- 9.4.3.2 Discontinuous mode of operation -- 9.4.3.3 Development -- 9.5 Conclusions -- 9.6 Problems -- References -- Chapter 10 - Wireless Power Transfer in On-Line Electric Vehicle -- 10.1 Introduction -- 10.1.1 Wireless Power Transfer Technology -- 10.1.2 Wireless Power Transfer System in the Market -- 10.1.2.1 Application to automobiles -- 10.2 Mechanism of Wireless Power Transfer -- 10.2.1 Electric Field and Magnetic Field -- 10.2.2 Inductive Coupling and Resonant Magnetic Coupling -- 10.2.3 Topology Selection and Coil Design -- 10.3 Design of On-Line Electric Vehicle -- 10.3.1 Necessity of On-Line Electric Vehicle -- 10.3.2 Challenges -- 10.3.3 Topology Analysis -- 10.3.4 Coil Design for Electric Vehicle -- 10.3.5 Electromagnetic Field Reduction Technology -- 10.3.6 Design Procedure and Optimization -- 10.4 Conclusions -- 10.5 Problems -- References -- Chapter 11 - Wireless Powering and Propagation of Radio Frequencies through Tissue -- 11.1 Introduction -- 11.2 Comparison of Transcutaneous Powering Techniques -- 11.3 Analysis -- 11.3.1 Reflections at an Interface -- 11.3.2 Attenuation Due to Tissue Absorption
  • 11.3.3 Energy Spreading (Free-Space Path Loss)
Control code
EBC4509482
Dimensions
unknown
Extent
1 online resource (767 pages)
Form of item
online
Isbn
9788793237636
Media category
computer
Media MARC source
rdamedia
Media type code
c
Note
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Sound
unknown sound
Specific material designation
remote
System control number
  • (MiAaPQ)EBC4509482
  • (Au-PeEL)EBL4509482
  • (CaPaEBR)ebr11247339
  • (OCoLC)957125084
Label
Wireless Power Transfer, 2nd Edition
Link
http://ebookcentral.proquest.com/lib/multco/detail.action?docID=4509482
Publication
Copyright
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Cover -- Title - Wireless Power Transfer 2nd Edition -- Series Page -- Half Title - Wireless Power Transfer 2nd Edition -- Copy Right Page -- Contents -- Preface -- Acknowledgment -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- Chapter 1 - Power Transfer by Magnetic Induction Using Coupled-Mode Theory -- 1.1 Introduction -- 1.2 Series-Series Resonators Inductively Coupled -- 1.2.1 Analysis by the Circuit Theory -- 1.2.2 Analysis by the Coupled-Mode Theory -- 1.2.3 Transfer Power Computation -- 1.2.4 Remark -- 1.3 Mutual Inductance Computation -- 1.4 Efficiency of the Active Power Transffer -- 1.4.1 Scattering Parameters S -- 1.4.2 Efficiency Computation -- 1.5 Some Procedures for Optimal Wireless Energy Transfer Systems -- 1.5.1 Indroduction -- 1.5.2 Optimal Parameter Computing Performance Optimization of Magnetic Coupled Resonators -- 1.5.3 Remarks -- 1.6 Conclusions -- 1.7 Problems -- 1.8 Solutions to Problems -- References -- Chapter 2 - Efficient Wireless Power Transfer based on Strongly Coupled Magnetic Resonance -- 2.1 Introduction -- 2.2 Interaction in Lossless Physical System -- 2.3 Interaction in Real Two-Resonator Physical System -- 2.3.1 Fully Resonant Case -- 2.3.1.1 Strong coupling k /√ΓSΓD >> 1 -- 2.3.1.2 Weak coupling k /√ΓSΓD ≈ 1 or k /√ΓSΓD < 1 -- 2.3.2 General Non-Resonant Case -- 2.4 Relay Effect of Wireless Power Transfer -- 2.4.1 Relay Effect -- 2.4.2 Time-Domain Comparison between Relayed and Original Witricity Systems -- 2.5 Wireless Power Transfer with Multiple Resonators -- 2.5.1 General Solution for Multiple Relays -- 2.5.2 Inline Relay(s) -- 2.5.2.1 One relay -- 2.5.2.2 Two relays -- 2.5.2.3 Spectral analysis of energy exchanges -- 2.5.3 Optimization of 2D WPTN Scheme -- 2.5.3.1 Case 1 with two relays -- 2.5.3.2 Case 2 with two relays
  • 2.5.3.3 Spectral analysis of energy exchanges -- 2.6 Prototype of Wireless Power Transfer -- 2.6.1 Cylindrical Resonator Design -- 2.6.2 Implementation of Cylindrical Resonator -- 2.6.3 Evaluation of Cylindrical Resonator -- 2.6.4 Application of Cylindrical Resonator -- 2.7 Discussion -- 2.8 Conclusions -- References -- Chapter 3 - Low Power Rectenna Systems for Wireless Energy Transfer -- 3.1 Introduction -- 3.1.1 History of Wireless Power Transfer -- 3.1.2 Wireless Power Transfer Techniques -- 3.1.2.1 DC-RF conversion -- 3.1.2.2 Electromagnetic wave propagation -- 3.1.2.3 RF-DC conversion -- 3.2 Low Power Rectenna Topologies -- 3.2.1 Circuit Topologies -- 3.2.1.1 Series-mounted diode -- 3.2.1.2 Shunt-mounted diode -- 3.2.1.3 Voltage-doubler topology -- 3.2.1.4 Diode bridge topology -- 3.2.1.5 Transistor-based rectennas -- 3.2.2 Rectenna Associations -- 3.2.3 Modeling a Rectenna -- 3.2.4 A Designer's Dilemma -- 3.2.4.1 Output characteristics -- 3.2.4.2 Antenna impedance influence -- 3.3 Reconfigurable Electromagnetic Energy Receiver -- 3.3.1 Typical Application -- 3.3.2 Rectenna Circuit Configuration -- 3.3.3 Reconfigurable Architecture -- 3.3.3.1 Antenna switch -- 3.3.3.2 Global performance -- 3.3.3.3 Output load matching -- 3.4 Conclusions -- References -- Chapter 4 - Wireless Power Transfer: Generation,Transmission, and Distribution Circuit Theory of Wireless Power Transfer -- 4.1 Introduction -- 4.2 Criteria for Efficient Resonant Wireless Power Transfer -- 4.2.1 High Power Factor (cos θ = 1) -- 4.2.2 High Coupling Coefficient (k ≈ 1) -- 4.2.3 High Quality (Q >> 1) Factors -- 4.2.4 Matching Circuits -- 4.2.5 Focusing of Magnetic Field -- 4.3 Resonant Wireless Power Transfer -- 4.3.1 Higher-Order WPT Systems -- 4.4 Loosely Coupled Wireless Power Transfer System -- 4.4.1 Low Q1 and Q2 -- 4.4.2 High Q1 and Q2 -- 4.5 Efficiency -- 4.6 Summary
  • Chapter 5 - Inductive Wireless Power Transfer Using Circuit Theory -- 5.1 Introduction -- 5.2 Advantages of Inductive Coupling for Energy Transfer -- 5.3 Applications of Inductive Power Transfer -- 5.4 Fundamentals of Inductive Coupling -- 5.4.1 Inductive Coupling and Transformer Action -- 5.4.2 Resonant Circuit Topologies -- 5.4.3 Power Transfer across a Poorly Coupled Link -- 5.4.4 Near-and Far-Field Regions -- 5.4.5 The Importance of the Loop Antenna -- 5.4.6 Small Loop of Constant Current -- 5.4.7 The Loop in Transmitting Mode -- 5.4.8 The Loop in the Receiving Mode -- 5.5 Mutual Inductance of Coupled Coils -- 5.6 The Loosely Coupled Approximation -- 5.7 Summary -- References -- Chapter 6 - Recent Advances on Magnetic Resonant Wireless Power Transfer -- 6.1 Introduction -- 6.2 Coupled Inductors -- 6.2.1 Coupled Inductors -- 6.2.2 The Series Resonant Circuit -- 6.2.3 Adding Resonators to the Coupled Inductors -- 6.2.4 Maximum Efficiency, Maximum Power on the load,and Conjugate Matching:Two-Port Case -- 6.2.5 Maximum Efficiency: N-port Case -- 6.2.6 Scattering Matrix Representation of a Wireless Power Transfer Network -- 6.3 Four Coupled Resonators -- 6.4 Travelling Waves, Power Waves and Conjugate Image Impedances -- 6.4.1 TravellingWaves and Power Waves -- 6.4.2 Conjugate Image Impedances -- 6.5 Measurement of the Resonator Quality Factor -- 6.6 Examples of Coupled Resonators for WPT -- 6.7 Design of the Oscillator Powering the Resonant Link -- 6.8 Conclusions -- 6.9 Exercises -- 6.9.1 MATLAB function for single-loop inductance computation -- 6.9.2 MATLAB function for two coaxial conducting loops mutual inductance computation -- References -- Chapter 7 - Techniques for Optimal Wireless Power Transfer Systems -- 7.1 Introduction -- 7.2 Flux Conentrators -- 7.2.1 Splitting of Coupling Coefficients -- 7.2.2 Doubling of Coil Radius -- 7.3 Separators
  • 7.3.1 Simulations -- 7.3.2 Effect of Concentrator Quality Factor -- 7.3.3 Effect of Concentrator Radius -- 7.4 Approximate Magneto-Inductive Array Coupling Functions -- 7.4.1 System Specifications -- 7.4.2 Power Relations in Inductive Systems -- 7.4.3 Algorithm for Approximate Transfer Function -- 7.4.4 Interpretation of Algorithm -- 7.4.5 Correction Terms -- 7.5 Wireless Feedback Modelling -- 7.5.1 Wireless Feedback -- 7.5.2 Q-Based Explanation of Wireless Closed-Loop Transfer Function -- 7.6 Conclusions -- References -- Chapter 8 - Directional Tuning/Detuning Control of Wireless Power Pickups -- 8.1 Introduction -- 8.1.1 Shorting Control -- 8.1.2 Dynamic Tuning/Detuning Control -- 8.2 Directional Tuning/Detuning Control (DTDC) -- 8.2.1 Fundamentals of DTDC -- 8.2.2 Coarse-Tuning Stage -- 8.2.2.1 Coarse tuning in region A -- 8.2.2.2 Coarse tuning in region B -- 8.2.2.3 Coarse tuning in region C -- 8.2.2.4 Coarse tuning in region D -- 8.2.3 Fine-Tuning Stage -- 8.2.3.1 Fine-tuning between regions A and B -- 8.2.3.2 Fine-tuning between regions C and D -- 8.2.4 Design and Performance Considerations of DTDC -- 8.2.4.1 Category I -- 8.2.4.2 Category II -- 8.2.4.3 Category III -- 8.2.5 Standard Procedure of DTDC -- 8.3 DTDC-Controlled Parallel-Tuned LC Power Pickup -- 8.3.1 Fundamentals of Parallel-Tuned LC Power Pickup -- 8.3.2 Controllable Power Transfer Capacity of Parallel-Tuned LC Power Pickup -- 8.3.3 Effects of Parameter Variations on Output Voltage of Parallel-Tuned LC Power Pickup -- 8.3.4 Operating Frequency Variation -- 8.3.5 Magnetic Coupling Variation -- 8.3.6 Load Variation -- 8.3.7 Operating Range of Variable CS -- 8.3.7.1 Maximum required ratio (radj pv max) -- 8.3.7.2 Minimum required ratio (radj pv min) -- 8.3.8 Implementation of DTDC Controlled Parallel-Tuned LC Power Pickup -- 8.3.8.1 Selection of CS1 and CS2
  • 8.3.8.2 Equivalent Capacitance of CS2 -- 8.3.8.3 Integration of Control and ZVS Signals for Q1 and Q2 -- 8.4 Conclusions -- 8.5 Problems -- References -- Chapter 9 - Technology Overview and Concept of Wireless Charging Systems -- 9.1 Introduction -- 9.2 System Technology -- 9.2.1 Power Converter -- 9.2.2 Compensation Networks -- 9.2.3 Electromagnetic Structures -- 9.2.4 Power Conditioner -- 9.3 Applications -- 9.4 Development of Wireless Low-Power Transfer System -- 9.4.1 Methodology -- 9.4.1.1 Finite element formulation -- 9.4.2 D Planar Wireless Power Transfer System -- 9.4.2.1 Primary track loop -- 9.4.2.2 Pickup -- 9.4.3 Wireless Power Transfer System -- 9.4.3.1 Continuous mode of operation -- 9.4.3.2 Discontinuous mode of operation -- 9.4.3.3 Development -- 9.5 Conclusions -- 9.6 Problems -- References -- Chapter 10 - Wireless Power Transfer in On-Line Electric Vehicle -- 10.1 Introduction -- 10.1.1 Wireless Power Transfer Technology -- 10.1.2 Wireless Power Transfer System in the Market -- 10.1.2.1 Application to automobiles -- 10.2 Mechanism of Wireless Power Transfer -- 10.2.1 Electric Field and Magnetic Field -- 10.2.2 Inductive Coupling and Resonant Magnetic Coupling -- 10.2.3 Topology Selection and Coil Design -- 10.3 Design of On-Line Electric Vehicle -- 10.3.1 Necessity of On-Line Electric Vehicle -- 10.3.2 Challenges -- 10.3.3 Topology Analysis -- 10.3.4 Coil Design for Electric Vehicle -- 10.3.5 Electromagnetic Field Reduction Technology -- 10.3.6 Design Procedure and Optimization -- 10.4 Conclusions -- 10.5 Problems -- References -- Chapter 11 - Wireless Powering and Propagation of Radio Frequencies through Tissue -- 11.1 Introduction -- 11.2 Comparison of Transcutaneous Powering Techniques -- 11.3 Analysis -- 11.3.1 Reflections at an Interface -- 11.3.2 Attenuation Due to Tissue Absorption
  • 11.3.3 Energy Spreading (Free-Space Path Loss)
Control code
EBC4509482
Dimensions
unknown
Extent
1 online resource (767 pages)
Form of item
online
Isbn
9788793237636
Media category
computer
Media MARC source
rdamedia
Media type code
c
Note
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Sound
unknown sound
Specific material designation
remote
System control number
  • (MiAaPQ)EBC4509482
  • (Au-PeEL)EBL4509482
  • (CaPaEBR)ebr11247339
  • (OCoLC)957125084

Library Locations

  • Albina LibraryBorrow it
    3605 NE 15th Avenue, Portland, OR, 97212, US
    45.549039 -122.650525
  • Belmont LibraryBorrow it
    1038 SE César E. Chávez Boulevard, Portland, OR, 97214, US
    45.515217 -122.622669
  • Capitol Hill LibraryBorrow it
    10723 SW Capitol Highway, Portland, OR, 97219, US
    45.448003 -122.725422
  • Central LibraryBorrow it
    801 SW 10th Avenue, Portland, OR, 97205, US
    45.519098 -122.682899
  • Fairview-Columbia LibraryBorrow it
    1520 NE Village Street, Fairview, OR, 97024, US
    45.532283 -122.439336
  • Gregory Heights LibraryBorrow it
    7921 NE Sandy Boulevard, Portland, OR, 97213, US
    45.551662 -122.581264
  • Gresham LibraryBorrow it
    385 NW Miller Avenue, Gresham, OR, 97030, US
    45.500070 -122.433041
  • Hillsdale LibraryBorrow it
    1525 SW Sunset Boulevard, Portland, OR, 97239, US
    45.479852 -122.694013
  • Holgate LibraryBorrow it
    7905 SE Holgate Boulevard, Portland, OR, 97206, US
    45.490548 -122.582218
  • Hollywood LibraryBorrow it
    4040 NE Tillamook Street, Portland, OR, 97212, US
    45.537544 -122.621237
  • Isom BuildingBorrow it
    205 NE Russell Street , Portland, OR, 97212, US
    45.541222 -122.663268
  • Kenton LibraryBorrow it
    8226 N Denver Avenue, Portland, OR, 97217, US
    45.582857 -122.686379
  • Midland LibraryBorrow it
    805 SE 122nd Avenue, Portland, OR, 97233, US
    45.516683 -122.538488
  • North Portland LibraryBorrow it
    512 N Killingsworth Street, Portland, OR, 97217, US
    45.562454 -122.671507
  • Northwest LibraryBorrow it
    2300 NW Thurman Street, Portland, OR, 97210, US
    45.535316 -122.699254
  • Rockwood LibraryBorrow it
    17917 SE Stark Street, Portland, OR, 97233, US
    45.519541 -122.479013
  • Sellwood-Moreland LibraryBorrow it
    7860 SE 13th Avenue, Portland, OR, 97202, US
    45.467703 -122.652639
  • St. Johns LibraryBorrow it
    7510 N Charleston Avenue, Portland, OR, 97203, US
    45.590046 -122.751043
  • The Title Wave Used BookstoreBorrow it
    216 NE Knott Street, Portland, OR, 97212, US
    45.541647 -122.663075
  • Troutdale LibraryBorrow it
    2451 SW Cherry Park Road, Troutdale, OR, 97060, US
    45.529595 -122.409662
  • Woodstock LibraryBorrow it
    6008 SE 49th Avenue, Portland, OR, 97206, US
    45.478961 -122.612079
Processing Feedback ...