The Resource Superconductors in the Power Grid : Materials and Applications

Superconductors in the Power Grid : Materials and Applications

Label
Superconductors in the Power Grid : Materials and Applications
Title
Superconductors in the Power Grid
Title remainder
Materials and Applications
Creator
Contributor
Subject
Genre
Language
eng
Summary
Superconductors offer high throughput with low electric losses and have the potential to transform the electric power grid. Transmission networks incorporating cables of this type could, for example, deliver more power and enable substantial energy savings. Superconductors in the Power Grid: Materials and Applications provides an overview of superconductors and their applications in power grids. Sections address the design and engineering of cable systems and fault current limiters and other emerging applications for superconductors in the power grid, as well as case studies of industrial applications of superconductors in the power grid. Expert editor from highly respected US government-funded research centre Unique focus on superconductors in the power grid Comprehensive coverage
Member of
Cataloging source
MiAaPQ
http://library.link/vocab/creatorName
Rey, C
LC call number
QC612.S8 -- .S874 2015eb
Literary form
non fiction
Nature of contents
dictionaries
http://library.link/vocab/relatedWorkOrContributorName
ProQuest (Firm)
Series statement
Woodhead Publishing Series in Energy Ser
http://library.link/vocab/subjectName
  • Electric power distribution
  • Superconductors
Label
Superconductors in the Power Grid : Materials and Applications
Link
https://ebookcentral.proquest.com/lib/multco/detail.action?docID=2036173
Instantiates
Publication
Copyright
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Front Cover -- Related titles -- Superconductors in the Power Grid -- Copyright -- Contents -- List of contributors -- Woodhead Publishing Series in Energy -- Dedication -- Preface -- Acknowledgements -- Part One - Fundamentals and materials -- 1 - The power grid and the impact of high-temperature superconductor technology: an overview -- 1.1 Introduction -- 1.2 Overview of the electric power grid -- 1.3 Elements of the electric power grid -- 1.4 Superconductivity -- 1.5 Status and prospects of superconductor power equipment -- 1.6 Conclusion and future trends -- Acknowledgments -- References -- 2 - Fundamentals of superconductivity -- 2.1 History -- 2.2 Meissner effect -- 2.3 London equations and magnetic penetration depth -- 2.4 Critical currents in type I superconductors -- 2.5 Magnetization in type I superconductors -- 2.6 Intermediate state -- 2.7 Coherence length -- 2.8 Type II superconductors -- 2.9 The mixed state: Hc1 and Hc2 -- 2.10 Reversible magnetization in type II superconductors -- 2.11 Critical currents and irreversible magnetic properties of type II superconductors -- 2.12 Entropy and free energy -- 2.13 Bardeen, Cooper and Schrieffer (BCS) theory -- 2.14 Low-temperature metallic superconductors (LTS): NbTi, Nb3Sn, and MgB2 -- 2.15 High-temperature superconductivity -- 2.16 Comparison of HTS to LTS properties and summary of fundamental parameters -- 2.17 Practical superconductors -- Acknowledgment -- References -- 3 - Bismuth-based oxide (BSCCO) high-temperature superconducting wires for power grid applications: properties and fabrication -- 3.1 Introduction -- 3.2 Properties of bismuth-based oxide (BSCCO) -- 3.3 Fabrication of BSCCO superconducting cables and wires -- 3.4 Applications of BSCCO superconducting cables and wires -- 3.5 Future trends -- Acknowledgments -- References
  • 4 - Second-generation (2G) coated high-temperature superconducting cables and wires for power grid applications -- 4.1 Introduction -- 4.2 Second-generation (2G) materials and wire design -- 4.3 2G wire fabrication approaches -- 4.4 2G manufacturers and wire properties -- 4.5 Applications (brief review of major applications for 2G wire) -- 4.6 Conclusion and future trends -- 4.7 Sources of further information and advice -- References -- Part Two - High-temperature superconducting (HTS) cable technology -- 5 - High-temperature superconducting (HTS) AC cables for power grid applications -- 5.1 Introduction -- 5.2 High-temperature superconducting (HTS) AC cable design -- 5.3 AC loss of HTS cables -- 5.4 Terminations -- 5.5 Cryogenic refrigeration systems for HTS AC cables -- 5.6 Principles of fault-current-limiting HTS AC cables -- 5.7 Inductance and capacitance -- 5.8 Some major HTS AC cable projects -- 5.9 Conclusion: commercial prospects for HTS AC cable -- Acknowledgments -- References -- 6 - Using superconducting DC cables to improve the efficiency of electricity transmission and distribution (T&D) networks: ... -- 6.1 Introduction -- 6.2 Superconducting cable systems: key elements -- 6.3 Superconducting materials -- 6.4 Cable conductors and electrical insulation -- 6.5 Cable cryostat -- 6.6 Cable terminations and joints -- 6.7 Cryogenic machine -- 6.8 DC superconductive cable system configurations -- 6.9 Power dissipation sources in the superconducting system -- 6.10 Power losses from AC ripples -- 6.11 Comparing power dissipation in a DC superconducting system to a conventional system -- 6.12 Opportunities for DC Superconducting Cables -- 6.13 Conclusions -- References -- 7 - High-temperature superconducting (HTS) power cables cooled by helium gas -- 7.1 History of superconducting cables -- 7.2 Introduction to GHe-cooled superconducting cables
  • 7.3 Potential applications of GHe cables -- 7.4 Technical issues pertinent to GHe-cooled high-temperature superconducting (HTS) cables -- 7.5 Dielectric design aspects of helium gas-cooled HTS cables -- 7.6 Design aspects for GHe-cooled HTS cable terminations -- 7.7 Cryogenic helium circulation systems -- 7.8 Ongoing GHe-cooled HTS cable projects -- 7.9 Summary -- References -- 8 - High-temperature superconducting cable cooling systems for power grid applications -- 8.1 Introduction -- 8.2 Thermal loads -- 8.3 Topology of high-temperature superconducting (HTS) cable cooling circuits -- 8.4 Coolant selection -- 8.5 Refrigeration system overview -- 8.6 Types of refrigeration systems -- 8.7 Recent installations -- 8.8 Future trends -- 8.9 Conclusions -- References -- Part Three - Applications -- 9 - High-temperature superconducting fault current limiters (FCLs) for power grid applications -- 9.1 Introduction -- 9.2 Utility requirements for fault-current-limiting parameters -- 9.3 Designs and operation principles of various types of superconducting fault current limiters (SFCLs) -- 9.4 Status of fault current limiters development and implementation -- 9.5 Comparison of different fault current limiters -- 9.6 Applicability of superconducting fault current limiters in power systems -- 9.7 Future trends -- 9.8 Sources of further information -- References -- Further reading -- 10 - High-temperature superconducting motors and generators for power grid applications -- 10.1 Introduction -- 10.2 Principles of superconducting (SC) motors and generators -- 10.3 Types of SC motors and generators -- 10.4 Prototypes built to date -- 10.5 SC wire and cryorefrigeration requirements -- 10.6 Conclusion and future trends -- References -- 11 - High-temperature superconducting magnetic energy storage (SMES) for power grid applications -- 11.1 Introduction
  • 11.2 Construction of superconducting magnetic energy storage (SMES): maximising energy storage and minimising cost -- 11.3 Materials -- 11.4 Competing technologies -- 11.5 Markets -- 11.6 Future developments -- References -- 12 - High-temperature superconducting (HTS) transformers for power grid applications -- 12.1 Introduction -- 12.2 Transformers and the electricity grid -- 12.3 A brief history of superconducting transformers -- 12.4 High-temperature superconducting (HTS) transformers - general principles -- 12.5 AC loss in transformer windings -- 12.6 Cryogenic systems for HTS transformers -- 12.7 Challenges for HTS transformers -- 12.8 The HTS transformer value proposition - total cost of ownership (TCO) -- 12.9 Conclusions -- References -- 13 - Implementing high-temperature superconductors for the power grid in practice: the case of China -- 13.1 Introduction -- 13.2 Research and development of superconductors in power in China -- 13.3 The 10kV superconducting power substation in Baiyin City, Gansu Province -- 13.3 The 10kV superconducting power substation in Baiyin City, Gansu Province -- 13.4 Superconducting fault current limiters (SFCLs) and the 360m/10kA superconducting DC power cable (Xiao et al., 2012b -- Xin et ... -- 13.5 Superconducting magnetic energy storage -- 13.6 Future trends -- 13.7 Sources of further information and advice -- References -- Index
Control code
EBC2036173
Dimensions
unknown
Extent
1 online resource (463 pages)
Form of item
online
Isbn
9781782420378
Media category
computer
Media MARC source
rdamedia
Media type code
c
Note
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Sound
unknown sound
Specific material designation
remote
System control number
  • (MiAaPQ)EBC2036173
  • (Au-PeEL)EBL2036173
  • (CaPaEBR)ebr11047004
  • (CaONFJC)MIL772154
  • (OCoLC)908513512
Label
Superconductors in the Power Grid : Materials and Applications
Link
https://ebookcentral.proquest.com/lib/multco/detail.action?docID=2036173
Publication
Copyright
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Front Cover -- Related titles -- Superconductors in the Power Grid -- Copyright -- Contents -- List of contributors -- Woodhead Publishing Series in Energy -- Dedication -- Preface -- Acknowledgements -- Part One - Fundamentals and materials -- 1 - The power grid and the impact of high-temperature superconductor technology: an overview -- 1.1 Introduction -- 1.2 Overview of the electric power grid -- 1.3 Elements of the electric power grid -- 1.4 Superconductivity -- 1.5 Status and prospects of superconductor power equipment -- 1.6 Conclusion and future trends -- Acknowledgments -- References -- 2 - Fundamentals of superconductivity -- 2.1 History -- 2.2 Meissner effect -- 2.3 London equations and magnetic penetration depth -- 2.4 Critical currents in type I superconductors -- 2.5 Magnetization in type I superconductors -- 2.6 Intermediate state -- 2.7 Coherence length -- 2.8 Type II superconductors -- 2.9 The mixed state: Hc1 and Hc2 -- 2.10 Reversible magnetization in type II superconductors -- 2.11 Critical currents and irreversible magnetic properties of type II superconductors -- 2.12 Entropy and free energy -- 2.13 Bardeen, Cooper and Schrieffer (BCS) theory -- 2.14 Low-temperature metallic superconductors (LTS): NbTi, Nb3Sn, and MgB2 -- 2.15 High-temperature superconductivity -- 2.16 Comparison of HTS to LTS properties and summary of fundamental parameters -- 2.17 Practical superconductors -- Acknowledgment -- References -- 3 - Bismuth-based oxide (BSCCO) high-temperature superconducting wires for power grid applications: properties and fabrication -- 3.1 Introduction -- 3.2 Properties of bismuth-based oxide (BSCCO) -- 3.3 Fabrication of BSCCO superconducting cables and wires -- 3.4 Applications of BSCCO superconducting cables and wires -- 3.5 Future trends -- Acknowledgments -- References
  • 4 - Second-generation (2G) coated high-temperature superconducting cables and wires for power grid applications -- 4.1 Introduction -- 4.2 Second-generation (2G) materials and wire design -- 4.3 2G wire fabrication approaches -- 4.4 2G manufacturers and wire properties -- 4.5 Applications (brief review of major applications for 2G wire) -- 4.6 Conclusion and future trends -- 4.7 Sources of further information and advice -- References -- Part Two - High-temperature superconducting (HTS) cable technology -- 5 - High-temperature superconducting (HTS) AC cables for power grid applications -- 5.1 Introduction -- 5.2 High-temperature superconducting (HTS) AC cable design -- 5.3 AC loss of HTS cables -- 5.4 Terminations -- 5.5 Cryogenic refrigeration systems for HTS AC cables -- 5.6 Principles of fault-current-limiting HTS AC cables -- 5.7 Inductance and capacitance -- 5.8 Some major HTS AC cable projects -- 5.9 Conclusion: commercial prospects for HTS AC cable -- Acknowledgments -- References -- 6 - Using superconducting DC cables to improve the efficiency of electricity transmission and distribution (T&D) networks: ... -- 6.1 Introduction -- 6.2 Superconducting cable systems: key elements -- 6.3 Superconducting materials -- 6.4 Cable conductors and electrical insulation -- 6.5 Cable cryostat -- 6.6 Cable terminations and joints -- 6.7 Cryogenic machine -- 6.8 DC superconductive cable system configurations -- 6.9 Power dissipation sources in the superconducting system -- 6.10 Power losses from AC ripples -- 6.11 Comparing power dissipation in a DC superconducting system to a conventional system -- 6.12 Opportunities for DC Superconducting Cables -- 6.13 Conclusions -- References -- 7 - High-temperature superconducting (HTS) power cables cooled by helium gas -- 7.1 History of superconducting cables -- 7.2 Introduction to GHe-cooled superconducting cables
  • 7.3 Potential applications of GHe cables -- 7.4 Technical issues pertinent to GHe-cooled high-temperature superconducting (HTS) cables -- 7.5 Dielectric design aspects of helium gas-cooled HTS cables -- 7.6 Design aspects for GHe-cooled HTS cable terminations -- 7.7 Cryogenic helium circulation systems -- 7.8 Ongoing GHe-cooled HTS cable projects -- 7.9 Summary -- References -- 8 - High-temperature superconducting cable cooling systems for power grid applications -- 8.1 Introduction -- 8.2 Thermal loads -- 8.3 Topology of high-temperature superconducting (HTS) cable cooling circuits -- 8.4 Coolant selection -- 8.5 Refrigeration system overview -- 8.6 Types of refrigeration systems -- 8.7 Recent installations -- 8.8 Future trends -- 8.9 Conclusions -- References -- Part Three - Applications -- 9 - High-temperature superconducting fault current limiters (FCLs) for power grid applications -- 9.1 Introduction -- 9.2 Utility requirements for fault-current-limiting parameters -- 9.3 Designs and operation principles of various types of superconducting fault current limiters (SFCLs) -- 9.4 Status of fault current limiters development and implementation -- 9.5 Comparison of different fault current limiters -- 9.6 Applicability of superconducting fault current limiters in power systems -- 9.7 Future trends -- 9.8 Sources of further information -- References -- Further reading -- 10 - High-temperature superconducting motors and generators for power grid applications -- 10.1 Introduction -- 10.2 Principles of superconducting (SC) motors and generators -- 10.3 Types of SC motors and generators -- 10.4 Prototypes built to date -- 10.5 SC wire and cryorefrigeration requirements -- 10.6 Conclusion and future trends -- References -- 11 - High-temperature superconducting magnetic energy storage (SMES) for power grid applications -- 11.1 Introduction
  • 11.2 Construction of superconducting magnetic energy storage (SMES): maximising energy storage and minimising cost -- 11.3 Materials -- 11.4 Competing technologies -- 11.5 Markets -- 11.6 Future developments -- References -- 12 - High-temperature superconducting (HTS) transformers for power grid applications -- 12.1 Introduction -- 12.2 Transformers and the electricity grid -- 12.3 A brief history of superconducting transformers -- 12.4 High-temperature superconducting (HTS) transformers - general principles -- 12.5 AC loss in transformer windings -- 12.6 Cryogenic systems for HTS transformers -- 12.7 Challenges for HTS transformers -- 12.8 The HTS transformer value proposition - total cost of ownership (TCO) -- 12.9 Conclusions -- References -- 13 - Implementing high-temperature superconductors for the power grid in practice: the case of China -- 13.1 Introduction -- 13.2 Research and development of superconductors in power in China -- 13.3 The 10kV superconducting power substation in Baiyin City, Gansu Province -- 13.3 The 10kV superconducting power substation in Baiyin City, Gansu Province -- 13.4 Superconducting fault current limiters (SFCLs) and the 360m/10kA superconducting DC power cable (Xiao et al., 2012b -- Xin et ... -- 13.5 Superconducting magnetic energy storage -- 13.6 Future trends -- 13.7 Sources of further information and advice -- References -- Index
Control code
EBC2036173
Dimensions
unknown
Extent
1 online resource (463 pages)
Form of item
online
Isbn
9781782420378
Media category
computer
Media MARC source
rdamedia
Media type code
c
Note
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Sound
unknown sound
Specific material designation
remote
System control number
  • (MiAaPQ)EBC2036173
  • (Au-PeEL)EBL2036173
  • (CaPaEBR)ebr11047004
  • (CaONFJC)MIL772154
  • (OCoLC)908513512

Library Locations

  • Albina LibraryBorrow it
    3605 NE 15th Avenue, Portland, OR, 97212, US
    45.549039 -122.650525
  • Belmont LibraryBorrow it
    1038 SE César E. Chávez Boulevard, Portland, OR, 97214, US
    45.515217 -122.622669
  • Capitol Hill LibraryBorrow it
    10723 SW Capitol Highway, Portland, OR, 97219, US
    45.448003 -122.725422
  • Central LibraryBorrow it
    801 SW 10th Avenue, Portland, OR, 97205, US
    45.519098 -122.682899
  • Fairview-Columbia LibraryBorrow it
    1520 NE Village Street, Fairview, OR, 97024, US
    45.532283 -122.439336
  • Gregory Heights LibraryBorrow it
    7921 NE Sandy Boulevard, Portland, OR, 97213, US
    45.551662 -122.581264
  • Gresham LibraryBorrow it
    385 NW Miller Avenue, Gresham, OR, 97030, US
    45.500070 -122.433041
  • Hillsdale LibraryBorrow it
    1525 SW Sunset Boulevard, Portland, OR, 97239, US
    45.479852 -122.694013
  • Holgate LibraryBorrow it
    7905 SE Holgate Boulevard, Portland, OR, 97206, US
    45.490548 -122.582218
  • Hollywood LibraryBorrow it
    4040 NE Tillamook Street, Portland, OR, 97212, US
    45.537544 -122.621237
  • Isom BuildingBorrow it
    205 NE Russell Street , Portland, OR, 97212, US
    45.541222 -122.663268
  • Kenton LibraryBorrow it
    8226 N Denver Avenue, Portland, OR, 97217, US
    45.582857 -122.686379
  • Midland LibraryBorrow it
    805 SE 122nd Avenue, Portland, OR, 97233, US
    45.516683 -122.538488
  • North Portland LibraryBorrow it
    512 N Killingsworth Street, Portland, OR, 97217, US
    45.562454 -122.671507
  • Northwest LibraryBorrow it
    2300 NW Thurman Street, Portland, OR, 97210, US
    45.535316 -122.699254
  • Rockwood LibraryBorrow it
    17917 SE Stark Street, Portland, OR, 97233, US
    45.519541 -122.479013
  • Sellwood-Moreland LibraryBorrow it
    7860 SE 13th Avenue, Portland, OR, 97202, US
    45.467703 -122.652639
  • St. Johns LibraryBorrow it
    7510 N Charleston Avenue, Portland, OR, 97203, US
    45.590046 -122.751043
  • The Title Wave Used BookstoreBorrow it
    216 NE Knott Street, Portland, OR, 97212, US
    45.541647 -122.663075
  • Troutdale LibraryBorrow it
    2451 SW Cherry Park Road, Troutdale, OR, 97060, US
    45.529595 -122.409662
  • Woodstock LibraryBorrow it
    6008 SE 49th Avenue, Portland, OR, 97206, US
    45.478961 -122.612079
Processing Feedback ...