The Resource Scaffold Hopping in Medicinal Chemistry

Scaffold Hopping in Medicinal Chemistry

Label
Scaffold Hopping in Medicinal Chemistry
Title
Scaffold Hopping in Medicinal Chemistry
Creator
Contributor
Subject
Genre
Language
eng
Summary
This first systematic treatment of the concept and practice of scaffold hopping shows the tricks of the trade and provides invaluable guidance for the reader's own projects. The first section serves as an introduction to the topic by describing the concept of scaffolds, their discovery, diversity and representation, and their importance for finding new chemical entities. The following part describes the most common tools and methods for scaffold hopping, whether topological, shape-based or structure-based. Methods such as CATS, Feature Trees, Feature Point Pharmacophores (FEPOPS), and SkelGen are discussed among many others. The final part contains three fully documented real-world examples of successful drug development projects by scaffold hopping that illustrate the benefits of the approach for medicinal chemistry. While most of the case studies are taken from medicinal chemistry, chemical and structural biologists will also benefit greatly from the insights presented here
Member of
Cataloging source
MiAaPQ
http://library.link/vocab/creatorName
Mannhold, Raimund
LC call number
QV18.2.S23 2014eb
Literary form
non fiction
Nature of contents
dictionaries
http://library.link/vocab/relatedWorkOrContributorName
  • Kubinyi, Hugo
  • Folkers, Gerd
  • Brown, Nathan
  • ProQuest (Firm)
Series statement
Methods and Principles in Medicinal Chemistry Ser.
Series volume
v.58
http://library.link/vocab/subjectName
  • Drug interactions
  • Pharmaceutical chemistry
Label
Scaffold Hopping in Medicinal Chemistry
Link
http://ebookcentral.proquest.com/lib/multco/detail.action?docID=1524298
Instantiates
Publication
Copyright
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Scaffold Hopping in Medicinal Chemistry -- Contents -- List of Contributors -- Preface -- A Personal Foreword -- Part One: Scaffolds: Identification, Representation Diversity, and Navigation -- 1 Identifying and Representing Scaffolds -- 1.1 Introduction -- 1.2 History of Scaffold Representations -- 1.3 Functional versus Structural Molecular Scaffolds -- 1.4 Objective and Invariant Scaffold Representations -- 1.4.1 Molecular Frameworks -- 1.4.2 Scaffold Tree -- 1.5 Maximum Common Substructures -- 1.6 Privileged Scaffolds -- 1.7 Conclusions -- References -- 2 Markush Structures and Chemical Patents -- 2.1 Introduction -- 2.2 Encoding Markush Structures -- 2.2.1 The r_group Record -- 2.2.1.1 Exact R Groups -- 2.2.1.2 Inexact R Groups -- 2.2.1.3 Fused R Groups -- 2.2.2 The Menguin Program -- 2.2.3 Correspondence between the MIL File and the Markush Structure -- 2.3 The Search Algorithm -- 2.3.1 Matching R Groups -- 2.3.1.1 Exact R Groups -- 2.3.1.2 Inexact R Groups -- 2.3.1.3 Fused R Groups -- 2.3.1.4 Hydrogen Atoms -- 2.3.1.5 Managing Multiple Fragment/R Group Matches -- 2.4 Using Periscope for Scaffold Hopping -- 2.4.1 Substructure Searching -- 2.4.2 Free-Wilson Analysis -- 2.4.3 Fast Followers -- 2.5 Conclusions -- References -- 3 Scaffold Diversity in Medicinal Chemistry Space -- 3.1 Introduction -- 3.1.1 Scaffold Representation -- 3.1.2 What Do We Mean by Scaffold Diversity? -- 3.2 Scaffold Composition of Medicinal Chemistry Space -- 3.2.1 Natural Products as a Source of Novel Medicinal Chemistry Scaffolds -- 3.2.2 Enumerating Potential Medicinal Chemistry Scaffolds -- 3.2.3 Using Scaffold Composition to Interpret Bioactivity Data -- 3.3 Metrics for Quantifying the Scaffold Diversity of Medicinal Chemistry Space -- 3.4 Visualizing the Scaffold Diversity of Medicinal Chemistry Space -- 3.5 Conclusions -- References
  • 4 Scaffold Mining of Publicly Available Compound Data -- 4.1 Introduction -- 4.2 Scaffold Definition -- 4.3 Selectivity of Scaffolds -- 4.3.1 Privileged Substructures -- 4.3.2 Target Community-Selective Scaffolds -- 4.3.3 Target-Selective Scaffolds -- 4.4 Target Promiscuity of Scaffolds -- 4.4.1 Promiscuous BM Scaffolds and CSKs -- 4.4.2 Scaffold-Target Family Profiles -- 4.4.3 Promiscuous Scaffolds in Drugs -- 4.5 Activity Cliff-Forming Scaffolds -- 4.5.1 Activity Cliff Concept -- 4.5.2 Multitarget Cliff-Forming Scaffolds -- 4.6 Scaffolds with Defined Activity Progression -- 4.6.1 Activity Profile Sequences -- 4.6.2 Conserved Scaffolds -- 4.7 Scaffold Diversity of Pharmaceutical Targets -- 4.7.1 Scaffold Hopping Potential -- 4.7.2 Structural Relationships between Scaffolds -- 4.7.3 Scaffold Hopping in Virtual Screening -- 4.8 Conclusions -- References -- 5 Exploring Virtual Scaffold Spaces -- 5.1 Introduction -- 5.1.1 Virtual Chemistry -- 5.1.2 Chemical Space -- 5.1.3 Scaffold Definition -- 5.2 The Comprehensive Enumeration of Parts of Chemical Space -- 5.2.1 Fragments -- 5.2.2 Ring Systems -- 5.2.3 Reagents -- 5.3 The Iterative Generation of Virtual Compounds -- 5.3.1 Transformations -- 5.3.2 Manual Selection of Chemical Modifications -- 5.3.3 Analog Generators -- 5.3.4 Inverse QSAR -- 5.3.5 Multiple Objective Optimization -- 5.3.6 Structure-Based De Novo Design -- 5.4 Virtual Synthesis -- 5.4.1 Synthetic Tractability -- 5.4.2 Using Real-Life Reactions for in Silico Molecule Construction -- 5.4.3 Readily Synthesizable Compounds -- 5.4.3.1 Construction -- 5.4.3.2 Searching -- 5.4.3.3 Outside Big Pharma -- 5.4.4 Iterative Approaches -- 5.5 Visualizations of Scaffold Space -- 5.6 A Perspective on the Past and the Future -- References -- Part Two: Scaffold-Hopping Methods -- 6 Similarity-Based Scaffold Hopping Using 2D Fingerprints -- 6.1 Fingerprints
  • 6.2 Retrospective Studies of Scaffold Hopping Using 2D Fingerprints -- 6.3 Predictive Studies of Scaffold Hopping Using 2D Fingerprints -- 6.4 Conclusions -- References -- 7 CATS for Scaffold Hopping in Medicinal Chemistry -- 7.1 Chemically Advanced Template Search -- 7.2 Retrospective Evaluation of Enrichment and Scaffold Hopping Potential -- 7.3 Prospective Scaffold-Hopping Applications -- 7.4 Conclusions -- References -- 8 Reduced Graphs -- 8.1 Introduction -- 8.2 Generating Reduced Graphs -- 8.2.1 Reduction Scheme -- 8.2.2 Node Labeling -- 8.2.3 Sheffield Implementations -- 8.2.4 Extended Reduced Graphs -- 8.3 Comparison and Usage of Reduced Graphs -- 8.3.1 Conventional Fingerprinting -- 8.3.2 RG-Specific Fingerprints -- 8.3.3 Augmenting Fingerprints with Edit Distance -- 8.3.4 Extended Reduced Graph Fingerprints -- 8.3.5 Graph Matching Approaches -- 8.3.6 Bioisostere Encoding -- 8.4 Summary -- References -- 9 Feature Trees -- 9.1 Introduction -- 9.2 Feature Tree Generation -- 9.3 Feature Tree Comparison -- 9.4 Retrospective Validation -- 9.5 Implementations and Applications -- 9.5.1 MTree: Combinations of Query Molecules -- 9.5.2 Similarity Searching in Large Combinatorial Chemistry Spaces -- 9.6 Conclusions -- References -- 10 Feature Point Pharmacophores (FEPOPS) -- 10.1 Similarity Searching in Drug Discovery -- 10.2 FEPOPS: An Analogy to Image Compression -- 10.3 Computing FEPOPS -- 10.4 Scaling and Correlations -- 10.5 Defining Scaffold Hopping -- 10.6 FEPOPS in Similarity Searching and Scaffold Hopping -- 10.7 Alternative Alignment -- 10.8 In Silico Target Prediction -- 10.9 Chemical Space Uniqueness -- 10.10 Perspective on FEPOPS' 10 Year Anniversary -- References -- 11 Three-Dimensional Scaffold Replacement Methods -- 11.1 Introduction -- 11.2 Generic Three-Dimensional Scaffold Replacement Workflow -- 11.2.1 Molecule Databases
  • 11.2.2 Fragment Generation and Filtering -- 11.2.3 Fragment Replacement Search and Scoring -- 11.3 SHOP: Scaffold HOPping by GRID-Based Similarity Searches -- 11.4 ReCore -- 11.5 BROOD -- 11.6 Conclusions -- References -- 12 Spherical Harmonic Molecular Surfaces (ParaSurf and ParaFit) -- 12.1 Introduction -- 12.2 Spherical Harmonic Surfaces -- 12.3 Rotating Spherical Polar Fourier Expansions -- 12.4 Spherical Harmonic Surface Shape Similarity -- 12.5 Calculating Consensus Shapes and Center Molecules -- 12.6 The ParaSurf and ParaFit Programs -- 12.7 Using Consensus Shapes to Probe the CCR5 Extracellular Pocket -- 12.8 Conclusions -- References -- 13 The XED Force Field and Spark -- 13.1 Pharmacological Similarity - More than Just Chemical Structure -- 13.2 Improving the Generation of Valid Molecular Fields -- 13.3 The eXtended Electron Distribution (XED) Force Field -- 13.4 The XED Force Field Applied to Scaffold Hopping in Spark -- 13.5 How Spark Works -- 13.6 Application of Spark in Drug Discovery Scenarios -- 13.7 P38 Kinase Inhibitor Fragment Growing Using Spark -- 13.7.1 The Beauty of P38 -- 13.8 Creating New Molecules -- 13.9 New Potential Inhibitors -- 13.10 The Far-Reaching Consequences of Using Molecular Fields as Measures of Similarity -- References -- 14 Molecular Interaction Fingerprints -- 14.1 Introduction -- 14.2 Target-Annotated Ligand Fingerprints -- 14.2.1 Interacting Atom/Fragment Fingerprints -- 14.2.2 Protein-Ligand Pharmacophores -- 14.3 Ligand-Annotated Target Fingerprints -- 14.4 True Target-Ligand Fingerprints -- 14.4.1 Association Fingerprints -- 14.4.2 Interaction Pattern Fingerprints -- 14.5 Conclusions -- References -- 15 SkelGen -- 15.1 Introduction -- 15.2 Structure Generation and Optimization -- 15.2.1 Fragments and Fragment Sets -- 15.2.2 Structure Generation -- 15.2.3 Scoring and Optimization
  • 15.2.4 Ligand-Based Design -- 15.3 Validation Studies -- 15.3.1 Retrospective Validation Study: CDK2, COX2, ER, MMP-3 -- 15.3.2 Estrogen Receptor -- 15.3.3 Histamine H3 Inverse Agonists -- 15.4 Scaffold Hopping Using Fixed Fragments -- 15.5 Scaffold Hopping Using Site Points -- 15.6 Further Considerations for Scaffold Hopping -- 15.6.1 Receptor Flexibility -- 15.6.2 Water Molecules -- 15.6.3 Receptor Specificity -- 15.7 Conclusion -- References -- Part Three: Case Studies -- 16 Case Study 1: Scaffold Hopping for T-Type Calcium Channel and Glycine Transporter Type 1 Inhibitors -- 16.1 Introduction -- 16.2 T-Type Calcium Channel Inhibitors -- 16.3 Scaffold Hopping to Access Novel Calcium T-Type Channel Inhibitors -- 16.4 Scaffold Hopping to Access Novel Glycine Transporter Type 1 (GlyT1) Inhibitors -- 16.5 Conclusions -- References -- 17 Case Study 2: Bioisosteric Replacements for the Neurokinin 1 Receptor (NK1R) -- 17.1 Introduction -- 17.2 Neurokinin 1 (NK1) Therapeutic Areas -- 17.3 The Neurokinin 1 Receptor (NK1R) and Its Mechanism -- 17.4 Neurokinin 1 Antagonists -- 17.5 NK1 Receptor: Target Active Site and Binding Mode -- 17.6 Bioisosteric Replacements in NK1 Receptor Antagonist -- 17.7 Bioisosteric Replacements in NK1 Receptor Antagonist: A Retrospective Study -- 17.8 Summary and Conclusions -- References -- 18 Case Study 3: Fragment Hopping to Design Highly Potent and Selective Neuronal Nitric Oxide Synthase Inhibitors -- 18.1 Fragment-Based Drug Design -- 18.2 Minimal Pharmacophoric Elements and Fragment Hopping -- 18.3 Fragment Hopping to Design Novel Inhibitors for Neuronal Nitric Oxide Synthase -- 18.4 Fragment Hopping to Optimize Neuronal Nitric Oxide Synthase Inhibitors -- 18.5 Application of Neuronal Nitric Oxide Synthase Inhibitors to the Prevention of Cerebral Palsy -- References -- Index
Control code
EBC1524298
Dimensions
unknown
Edition
1st ed.
Extent
1 online resource (326 pages)
Form of item
online
Isbn
9783527665174
Media category
computer
Media MARC source
rdamedia
Media type code
c
Note
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Sound
unknown sound
Specific material designation
remote
System control number
  • (MiAaPQ)EBC1524298
  • (Au-PeEL)EBL1524298
  • (CaPaEBR)ebr10799628
  • (CaONFJC)MIL540351
  • (OCoLC)862371218
Label
Scaffold Hopping in Medicinal Chemistry
Link
http://ebookcentral.proquest.com/lib/multco/detail.action?docID=1524298
Publication
Copyright
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Scaffold Hopping in Medicinal Chemistry -- Contents -- List of Contributors -- Preface -- A Personal Foreword -- Part One: Scaffolds: Identification, Representation Diversity, and Navigation -- 1 Identifying and Representing Scaffolds -- 1.1 Introduction -- 1.2 History of Scaffold Representations -- 1.3 Functional versus Structural Molecular Scaffolds -- 1.4 Objective and Invariant Scaffold Representations -- 1.4.1 Molecular Frameworks -- 1.4.2 Scaffold Tree -- 1.5 Maximum Common Substructures -- 1.6 Privileged Scaffolds -- 1.7 Conclusions -- References -- 2 Markush Structures and Chemical Patents -- 2.1 Introduction -- 2.2 Encoding Markush Structures -- 2.2.1 The r_group Record -- 2.2.1.1 Exact R Groups -- 2.2.1.2 Inexact R Groups -- 2.2.1.3 Fused R Groups -- 2.2.2 The Menguin Program -- 2.2.3 Correspondence between the MIL File and the Markush Structure -- 2.3 The Search Algorithm -- 2.3.1 Matching R Groups -- 2.3.1.1 Exact R Groups -- 2.3.1.2 Inexact R Groups -- 2.3.1.3 Fused R Groups -- 2.3.1.4 Hydrogen Atoms -- 2.3.1.5 Managing Multiple Fragment/R Group Matches -- 2.4 Using Periscope for Scaffold Hopping -- 2.4.1 Substructure Searching -- 2.4.2 Free-Wilson Analysis -- 2.4.3 Fast Followers -- 2.5 Conclusions -- References -- 3 Scaffold Diversity in Medicinal Chemistry Space -- 3.1 Introduction -- 3.1.1 Scaffold Representation -- 3.1.2 What Do We Mean by Scaffold Diversity? -- 3.2 Scaffold Composition of Medicinal Chemistry Space -- 3.2.1 Natural Products as a Source of Novel Medicinal Chemistry Scaffolds -- 3.2.2 Enumerating Potential Medicinal Chemistry Scaffolds -- 3.2.3 Using Scaffold Composition to Interpret Bioactivity Data -- 3.3 Metrics for Quantifying the Scaffold Diversity of Medicinal Chemistry Space -- 3.4 Visualizing the Scaffold Diversity of Medicinal Chemistry Space -- 3.5 Conclusions -- References
  • 4 Scaffold Mining of Publicly Available Compound Data -- 4.1 Introduction -- 4.2 Scaffold Definition -- 4.3 Selectivity of Scaffolds -- 4.3.1 Privileged Substructures -- 4.3.2 Target Community-Selective Scaffolds -- 4.3.3 Target-Selective Scaffolds -- 4.4 Target Promiscuity of Scaffolds -- 4.4.1 Promiscuous BM Scaffolds and CSKs -- 4.4.2 Scaffold-Target Family Profiles -- 4.4.3 Promiscuous Scaffolds in Drugs -- 4.5 Activity Cliff-Forming Scaffolds -- 4.5.1 Activity Cliff Concept -- 4.5.2 Multitarget Cliff-Forming Scaffolds -- 4.6 Scaffolds with Defined Activity Progression -- 4.6.1 Activity Profile Sequences -- 4.6.2 Conserved Scaffolds -- 4.7 Scaffold Diversity of Pharmaceutical Targets -- 4.7.1 Scaffold Hopping Potential -- 4.7.2 Structural Relationships between Scaffolds -- 4.7.3 Scaffold Hopping in Virtual Screening -- 4.8 Conclusions -- References -- 5 Exploring Virtual Scaffold Spaces -- 5.1 Introduction -- 5.1.1 Virtual Chemistry -- 5.1.2 Chemical Space -- 5.1.3 Scaffold Definition -- 5.2 The Comprehensive Enumeration of Parts of Chemical Space -- 5.2.1 Fragments -- 5.2.2 Ring Systems -- 5.2.3 Reagents -- 5.3 The Iterative Generation of Virtual Compounds -- 5.3.1 Transformations -- 5.3.2 Manual Selection of Chemical Modifications -- 5.3.3 Analog Generators -- 5.3.4 Inverse QSAR -- 5.3.5 Multiple Objective Optimization -- 5.3.6 Structure-Based De Novo Design -- 5.4 Virtual Synthesis -- 5.4.1 Synthetic Tractability -- 5.4.2 Using Real-Life Reactions for in Silico Molecule Construction -- 5.4.3 Readily Synthesizable Compounds -- 5.4.3.1 Construction -- 5.4.3.2 Searching -- 5.4.3.3 Outside Big Pharma -- 5.4.4 Iterative Approaches -- 5.5 Visualizations of Scaffold Space -- 5.6 A Perspective on the Past and the Future -- References -- Part Two: Scaffold-Hopping Methods -- 6 Similarity-Based Scaffold Hopping Using 2D Fingerprints -- 6.1 Fingerprints
  • 6.2 Retrospective Studies of Scaffold Hopping Using 2D Fingerprints -- 6.3 Predictive Studies of Scaffold Hopping Using 2D Fingerprints -- 6.4 Conclusions -- References -- 7 CATS for Scaffold Hopping in Medicinal Chemistry -- 7.1 Chemically Advanced Template Search -- 7.2 Retrospective Evaluation of Enrichment and Scaffold Hopping Potential -- 7.3 Prospective Scaffold-Hopping Applications -- 7.4 Conclusions -- References -- 8 Reduced Graphs -- 8.1 Introduction -- 8.2 Generating Reduced Graphs -- 8.2.1 Reduction Scheme -- 8.2.2 Node Labeling -- 8.2.3 Sheffield Implementations -- 8.2.4 Extended Reduced Graphs -- 8.3 Comparison and Usage of Reduced Graphs -- 8.3.1 Conventional Fingerprinting -- 8.3.2 RG-Specific Fingerprints -- 8.3.3 Augmenting Fingerprints with Edit Distance -- 8.3.4 Extended Reduced Graph Fingerprints -- 8.3.5 Graph Matching Approaches -- 8.3.6 Bioisostere Encoding -- 8.4 Summary -- References -- 9 Feature Trees -- 9.1 Introduction -- 9.2 Feature Tree Generation -- 9.3 Feature Tree Comparison -- 9.4 Retrospective Validation -- 9.5 Implementations and Applications -- 9.5.1 MTree: Combinations of Query Molecules -- 9.5.2 Similarity Searching in Large Combinatorial Chemistry Spaces -- 9.6 Conclusions -- References -- 10 Feature Point Pharmacophores (FEPOPS) -- 10.1 Similarity Searching in Drug Discovery -- 10.2 FEPOPS: An Analogy to Image Compression -- 10.3 Computing FEPOPS -- 10.4 Scaling and Correlations -- 10.5 Defining Scaffold Hopping -- 10.6 FEPOPS in Similarity Searching and Scaffold Hopping -- 10.7 Alternative Alignment -- 10.8 In Silico Target Prediction -- 10.9 Chemical Space Uniqueness -- 10.10 Perspective on FEPOPS' 10 Year Anniversary -- References -- 11 Three-Dimensional Scaffold Replacement Methods -- 11.1 Introduction -- 11.2 Generic Three-Dimensional Scaffold Replacement Workflow -- 11.2.1 Molecule Databases
  • 11.2.2 Fragment Generation and Filtering -- 11.2.3 Fragment Replacement Search and Scoring -- 11.3 SHOP: Scaffold HOPping by GRID-Based Similarity Searches -- 11.4 ReCore -- 11.5 BROOD -- 11.6 Conclusions -- References -- 12 Spherical Harmonic Molecular Surfaces (ParaSurf and ParaFit) -- 12.1 Introduction -- 12.2 Spherical Harmonic Surfaces -- 12.3 Rotating Spherical Polar Fourier Expansions -- 12.4 Spherical Harmonic Surface Shape Similarity -- 12.5 Calculating Consensus Shapes and Center Molecules -- 12.6 The ParaSurf and ParaFit Programs -- 12.7 Using Consensus Shapes to Probe the CCR5 Extracellular Pocket -- 12.8 Conclusions -- References -- 13 The XED Force Field and Spark -- 13.1 Pharmacological Similarity - More than Just Chemical Structure -- 13.2 Improving the Generation of Valid Molecular Fields -- 13.3 The eXtended Electron Distribution (XED) Force Field -- 13.4 The XED Force Field Applied to Scaffold Hopping in Spark -- 13.5 How Spark Works -- 13.6 Application of Spark in Drug Discovery Scenarios -- 13.7 P38 Kinase Inhibitor Fragment Growing Using Spark -- 13.7.1 The Beauty of P38 -- 13.8 Creating New Molecules -- 13.9 New Potential Inhibitors -- 13.10 The Far-Reaching Consequences of Using Molecular Fields as Measures of Similarity -- References -- 14 Molecular Interaction Fingerprints -- 14.1 Introduction -- 14.2 Target-Annotated Ligand Fingerprints -- 14.2.1 Interacting Atom/Fragment Fingerprints -- 14.2.2 Protein-Ligand Pharmacophores -- 14.3 Ligand-Annotated Target Fingerprints -- 14.4 True Target-Ligand Fingerprints -- 14.4.1 Association Fingerprints -- 14.4.2 Interaction Pattern Fingerprints -- 14.5 Conclusions -- References -- 15 SkelGen -- 15.1 Introduction -- 15.2 Structure Generation and Optimization -- 15.2.1 Fragments and Fragment Sets -- 15.2.2 Structure Generation -- 15.2.3 Scoring and Optimization
  • 15.2.4 Ligand-Based Design -- 15.3 Validation Studies -- 15.3.1 Retrospective Validation Study: CDK2, COX2, ER, MMP-3 -- 15.3.2 Estrogen Receptor -- 15.3.3 Histamine H3 Inverse Agonists -- 15.4 Scaffold Hopping Using Fixed Fragments -- 15.5 Scaffold Hopping Using Site Points -- 15.6 Further Considerations for Scaffold Hopping -- 15.6.1 Receptor Flexibility -- 15.6.2 Water Molecules -- 15.6.3 Receptor Specificity -- 15.7 Conclusion -- References -- Part Three: Case Studies -- 16 Case Study 1: Scaffold Hopping for T-Type Calcium Channel and Glycine Transporter Type 1 Inhibitors -- 16.1 Introduction -- 16.2 T-Type Calcium Channel Inhibitors -- 16.3 Scaffold Hopping to Access Novel Calcium T-Type Channel Inhibitors -- 16.4 Scaffold Hopping to Access Novel Glycine Transporter Type 1 (GlyT1) Inhibitors -- 16.5 Conclusions -- References -- 17 Case Study 2: Bioisosteric Replacements for the Neurokinin 1 Receptor (NK1R) -- 17.1 Introduction -- 17.2 Neurokinin 1 (NK1) Therapeutic Areas -- 17.3 The Neurokinin 1 Receptor (NK1R) and Its Mechanism -- 17.4 Neurokinin 1 Antagonists -- 17.5 NK1 Receptor: Target Active Site and Binding Mode -- 17.6 Bioisosteric Replacements in NK1 Receptor Antagonist -- 17.7 Bioisosteric Replacements in NK1 Receptor Antagonist: A Retrospective Study -- 17.8 Summary and Conclusions -- References -- 18 Case Study 3: Fragment Hopping to Design Highly Potent and Selective Neuronal Nitric Oxide Synthase Inhibitors -- 18.1 Fragment-Based Drug Design -- 18.2 Minimal Pharmacophoric Elements and Fragment Hopping -- 18.3 Fragment Hopping to Design Novel Inhibitors for Neuronal Nitric Oxide Synthase -- 18.4 Fragment Hopping to Optimize Neuronal Nitric Oxide Synthase Inhibitors -- 18.5 Application of Neuronal Nitric Oxide Synthase Inhibitors to the Prevention of Cerebral Palsy -- References -- Index
Control code
EBC1524298
Dimensions
unknown
Edition
1st ed.
Extent
1 online resource (326 pages)
Form of item
online
Isbn
9783527665174
Media category
computer
Media MARC source
rdamedia
Media type code
c
Note
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Sound
unknown sound
Specific material designation
remote
System control number
  • (MiAaPQ)EBC1524298
  • (Au-PeEL)EBL1524298
  • (CaPaEBR)ebr10799628
  • (CaONFJC)MIL540351
  • (OCoLC)862371218

Library Locations

  • Albina LibraryBorrow it
    3605 NE 15th Avenue, Portland, OR, 97212, US
    45.549039 -122.650525
  • Belmont LibraryBorrow it
    1038 SE César E. Chávez Boulevard, Portland, OR, 97214, US
    45.515217 -122.622669
  • Capitol Hill LibraryBorrow it
    10723 SW Capitol Highway, Portland, OR, 97219, US
    45.448003 -122.725422
  • Central LibraryBorrow it
    801 SW 10th Avenue, Portland, OR, 97205, US
    45.519098 -122.682899
  • Fairview-Columbia LibraryBorrow it
    1520 NE Village Street, Fairview, OR, 97024, US
    45.532283 -122.439336
  • Gregory Heights LibraryBorrow it
    7921 NE Sandy Boulevard, Portland, OR, 97213, US
    45.551662 -122.581264
  • Gresham LibraryBorrow it
    385 NW Miller Avenue, Gresham, OR, 97030, US
    45.500070 -122.433041
  • Hillsdale LibraryBorrow it
    1525 SW Sunset Boulevard, Portland, OR, 97239, US
    45.479852 -122.694013
  • Holgate LibraryBorrow it
    7905 SE Holgate Boulevard, Portland, OR, 97206, US
    45.490548 -122.582218
  • Hollywood LibraryBorrow it
    4040 NE Tillamook Street, Portland, OR, 97212, US
    45.537544 -122.621237
  • Isom BuildingBorrow it
    205 NE Russell Street , Portland, OR, 97212, US
    45.541222 -122.663268
  • Kenton LibraryBorrow it
    8226 N Denver Avenue, Portland, OR, 97217, US
    45.582857 -122.686379
  • Midland LibraryBorrow it
    805 SE 122nd Avenue, Portland, OR, 97233, US
    45.516683 -122.538488
  • North Portland LibraryBorrow it
    512 N Killingsworth Street, Portland, OR, 97217, US
    45.562454 -122.671507
  • Northwest LibraryBorrow it
    2300 NW Thurman Street, Portland, OR, 97210, US
    45.535316 -122.699254
  • Rockwood LibraryBorrow it
    17917 SE Stark Street, Portland, OR, 97233, US
    45.519541 -122.479013
  • Sellwood-Moreland LibraryBorrow it
    7860 SE 13th Avenue, Portland, OR, 97202, US
    45.467703 -122.652639
  • St. Johns LibraryBorrow it
    7510 N Charleston Avenue, Portland, OR, 97203, US
    45.590046 -122.751043
  • The Title Wave Used BookstoreBorrow it
    216 NE Knott Street, Portland, OR, 97212, US
    45.541647 -122.663075
  • Troutdale LibraryBorrow it
    2451 SW Cherry Park Road, Troutdale, OR, 97060, US
    45.529595 -122.409662
  • Woodstock LibraryBorrow it
    6008 SE 49th Avenue, Portland, OR, 97206, US
    45.478961 -122.612079
Processing Feedback ...