The Resource Protein-Protein Interactions in Drug Discovery

Protein-Protein Interactions in Drug Discovery

Label
Protein-Protein Interactions in Drug Discovery
Title
Protein-Protein Interactions in Drug Discovery
Creator
Contributor
Subject
Genre
Language
eng
Summary
Treating protein-protein interactions as a novel and highly promising class of drug targets, this volume introduces the underlying strategies step by step, from the biology of PPIs to biophysical and computational methods for their investigation. The main part of the book describes examples of protein targets for which small molecule modulators have been developed, covering such diverse fields as cancer, autoimmune disorders and infectious diseases. Tailor-made for the practicing medicinal chemist, this ready reference includes a wide selection of case studies taken straight from the development pipeline of major pharmaceutical companies to illustrate the power and potential of this approach. From the contents: * Prediction of intra- and inter-species protein-protein interactions facilitating systems biology studies * Modulators of protein-protein interactions: The importance of Three-Dimensionality * Interactive technologies for leveraging the known chemistry of anchor residues * SH3 Domains as Drug Targets * P53 MDM2 Antagonists: Towards Non Genotoxic Anticancer Treatments * Inhibition of LFA-1/ICAM interaction for treatment of autoimmune diseases * The PIF-binding pocket of AGC kinases * Peptidic inhibitors of protein-protein interactions for cell adhesion receptors * The REPLACE Strategy for generating Non-ATP competitive Inhibitors of Cell-Cycle Protein Kinases and more
Member of
Cataloging source
MiAaPQ
http://library.link/vocab/creatorName
Mannhold, Raimund
LC call number
QP551.5 -- .P76 2013eb
Literary form
non fiction
Nature of contents
dictionaries
http://library.link/vocab/relatedWorkOrContributorName
  • Kubinyi, Hugo
  • Dömling, Alexander
  • Dmling, Alexander
  • ProQuest (Firm)
Series statement
Methods and Principles in Medicinal Chemistry Ser.
Series volume
v.56
http://library.link/vocab/subjectName
  • Protein binding
  • Protein-protein interactions
  • Proteins -- Inhibitors
Label
Protein-Protein Interactions in Drug Discovery
Link
http://ebookcentral.proquest.com/lib/multco/detail.action?docID=1117395
Instantiates
Publication
Copyright
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Protein-Protein Interactions in Drug Discovery -- Contents -- List of Contributors -- Preface -- A Personal Foreword -- 1 Protein-Protein Interactions: An Overview -- 1.1 Introduction -- 1.2 Role of PPIs in Human Physiology -- 1.3 Regulation of PPIs -- 1.4 Structural Features of PPI Interfaces -- 1.4.1 iNOS Homodimer -- 1.4.2 b-Catenin/Tcf4 Complex -- 1.4.3 LEDGF/HIV-IN Complex -- 1.4.4 HPV E1/E2 Complex -- 1.4.5 IFN-a/IFNAR Complex -- 1.4.6 TNF-a Trimer -- 1.5 Identification of PPI Inhibitors -- 1.6 Conclusions and Outlook -- References -- 2 Prediction of Intra- and Interspecies Protein-Protein Interactions Facilitating Systems Biology Studies -- 2.1 Introduction: Relevance of Interactome Studies to Disease and Drug Discovery -- 2.2 Our Current Knowledge of Interactomes Identified from Experiments is Incomplete -- 2.3 Reliability of Interactions Identified Experimentally -- 2.4 Computational Methods for PPI Prediction -- 2.4.1 Conservation of Gene Neighborhood -- 2.4.2 Gene Fusion -- 2.4.3 Sequence-Based Coevolution -- 2.4.4 Phylogenetic Profiling -- 2.4.5 Gene Expression -- 2.4.6 Structural Similarity -- 2.4.7 Integration Approaches -- 2.5 Sources of Biological Data in Use to Predict PPIs -- 2.6 Survey of Current Interactomes -- 2.6.1 Human Intraspecies Interactomes -- 2.6.2 Bacteria Intraspecies Interactomes -- 2.6.2.1 High-Throughput Experimental Approaches to Identify Intraspecies Bacterial Interactions -- 2.6.2.2 Modeling Intraspecies Bacterial Interactions -- 2.6.3 Bacteria-Human Interspecies Interactomes -- 2.6.3.1 Experimental Approaches to Identify Bacteria-Human PPIs -- 2.6.3.2 Modeling Bacteria-Human PPIs -- 2.6.4 Non-PPI Intraspecies Bacterial and Bacteria-Human Interspecies Interactome Models -- 2.6.5 Virus-Human Interspecies Interactomes -- References
  • 3 Modulators of Protein-Protein Interactions: Importance of Three-Dimensionality -- 3.1 Introduction -- 3.2 Study -- 3.3 Discussion -- 3.4 Summary -- References -- 4 A Leap into the Chemical Space of Protein-Protein Interaction Inhibitors -- 4.1 Introduction -- 4.2 Types of Interaction -- 4.3 Properties of the Interface -- 4.4 Orthosteric versus Allosteric Modulation -- 4.5 Leap into the iPPI Chemical Space -- 4.5.1 Seminal Works -- 4.5.2 Road to a Rationalization of the iPPI Chemical Space -- 4.6 Case Study -- 4.6.1 Visualizing the iPPI Chemical Space -- 4.6.2 iPPI versus ADME/Tox Properties -- 4.6.3 iPPI versus Aromaticity -- 4.6.4 iPPI versus Chemical Complexity -- 4.6.5 iPPI versus Molecular Shape -- 4.6.6 iPPI versus Potency -- 4.7 Conclusions -- References -- 5 Interactive Technologies for Leveraging the Known Chemistry of Anchor Residues to Disrupt Protein Interactions -- 5.1 Introduction -- 5.2 Druggable Sites in PPIs -- 5.3 Structure-Based Library Design - A Powerful Alternative to High-Throughput Screening -- 5.4 New MCR Chemistry to Design PPI Antagonists -- 5.5 Virtual Screening -- 5.6 New Interactive Modeling Techniques for Medicinal Chemists -- 5.7 New Ideas: Hit Rate Validation of Anchor-Centered Screening of p53/MDM2/4 -- 5.8 Summary -- References -- 6 SH3 Domains as Drug Targets -- 6.1 Introduction -- 6.2 Structure -- 6.3 Variability -- 6.4 SH3 Binding Motifs -- 6.4.1 Classical Binding Motifs -- 6.4.2 Tyrosine-Containing Motifs -- 6.4.3 RxxK Motif -- 6.4.4 Other Binding Motifs from Proteomic Screens -- 6.4.5 Tertiary Interactions -- 6.5 Selectivity -- 6.6 Drug Target Selection -- 6.7 Inhibition Strategies: Peptide and Peptoid Inhibitors -- 6.7.1 Peptide Ligands -- 6.7.2 Combinatorial Approaches -- 6.7.3 Peptide Dimers -- 6.7.4 Constrained Peptides -- 6.7.5 N-Substituted Peptoids -- 6.8 Small-Molecule Inhibitors -- 6.9 Conclusions
  • References -- 7 p53/MDM2 Antagonists: Towards Nongenotoxic Anticancer Treatments -- 7.1 Introduction -- 7.2 p53/MDM2 PPI is Characterized by Many Cocrystal Structures -- 7.3 Nutlins: First-In-Class MDM2 Antagonists -- 7.4 Johnson & Johnson: Benzodiazepines -- 7.5 Amgen: Chromenotriazolopyrimidines & Piperidones -- 7.6 University of Michigan: Spirooxindole -- 7.7 University of Pittsburgh: Ugi Based Compounds -- 7.8 University of Newcastle: Some Scaffolds With No Structural Biology Information -- 7.9 Outlook -- References -- 8 Inhibition of LFA-1/ICAM Interaction for the Treatment of Autoimmune Diseases -- 8.1 Introduction -- 8.2 Integrin Structure and Activation -- 8.3 Direct Inhibition of the LFA-1/ICAM Interaction -- 8.4 Allosteric Inhibitors of the LFA-1/ICAM interaction - IDAS Site -- 8.4.1 Abbott/ICOS/Biogen Series -- 8.4.2 Boehringer Ingelheim/Tanabe Seiyaku/Bristol-Myers Squibb Series -- 8.5 Summary -- References -- 9 The PIF Pocket of AGC Kinases: A Target Site for Allosteric Modulators and Protein-Protein Interaction Inhibitors -- 9.1 Introduction -- 9.2 Discovery and Physiological Functions of the PIF Pocket -- 9.3 Properties of the PIF Pocket Relevant to Drug Development -- 9.3.1 The PIF Pocket Offers the Potential to Develop Highly Selective Ligands -- 9.3.2 Molecular Interactions of the Natural HM Peptide Ligands -- 9.3.3 Allosteric Mechanism of the PIF Pocket -- 9.3.4 Structural Plasticity of the PIF Pocket -- 9.4 Small-Molecule PIF Pocket Ligands -- 9.4.1 Allosteric Activators and PPI Inhibitors of PDK1 -- 9.4.2 Identification of First Hit Compounds Using a Pharmacophore-Based Screening Approach -- 9.4.3 Current State of Research on PIF Pocket-Directed PDK1 Modulators -- 9.4.4 Allosteric Inhibitors -- 9.5 Potential Supportive Effects Enhancing the Cellular Activity of PIF Pocket-Binding Modulators -- 9.5.1 Allosteric Activators of PDK1
  • 9.5.2 PIF Pocket-Directed Inhibitors of AGC Kinases -- 9.6 Conclusions -- 9.6.1 Is the PIF Pocket a Druggable Site? -- 9.6.2 General Medicinal Chemistry Aspects and Outlook -- References -- 10 Retosiban and Epelsiban: Potent and Selective Orally Available Oxytocin Antagonists -- 10.1 Introduction -- 10.2 Aryl-2,5-DKP Template Discovery and Initial Structure-Activity Relationship Studies -- 10.3 Synthesis of the RRR and RRS 6-Indanyl-3-isobutyl-7-aryl-2,5-DKP Secondary Amides -- 10.4 Comparison of Crystal Structures of Oxytocin and 2,5-DKPs -- 10.5 Pharmacokinetics and Property-Based Design -- 10.6 In Vivo Potency of 2',4'-Diflurophenyl Dimethylamide -- 10.7 Synthesis of Tertiary Amides -- 10.7.1 Synthesis of Five- and Six-Membered Heterocyclic 2,5-DKPs -- 10.8 Summary of Lead Oxytocin Antagonist 2',4'-Diflurophenyl Dimethylamide 22 -- 10.9 Further Modifications, Five- and Six-Membered Heterocyclic Derivatives -- 10.10 Five-Membered Heterocyclic Derivatives and Retosiban -- 10.10.1 Oxytocin Antagonist Activity and Selectivity versus Human Vasopressin Receptors -- 10.10.2 In Vivo Potency and Synthesis -- 10.11 Summary of Lead Oxytocin Antagonist Retosiban 56 -- 10.12 Six-Membered Heterocyclic Derivatives and Epelsiban -- 10.12.1 Monosubstituted Pyridyl isoButyl Derivatives -- 10.12.2 Modification of isoButyl in 6'-MePyridyl Derivatives -- 10.12.3 Dimethylpyridyl (S)-sec-Butyl Amides -- 10.12.4 Further Evaluation of 2',6'-Dimethyl-30-pyridine Morpholine Amide -- 10.13 Summary of Lead Oxytocin Antagonist Epelsiban 77 -- 10.14 Comparison of Lead Compounds -- 10.15 Conclusions -- References -- 11 Peptidic Inhibitors of Protein-Protein Interactions for Cell Adhesion Receptors: RGD Peptides and Beyond -- 11.1 Introduction -- 11.2 From the Discovery of the RGD Motif in FN to the First Selective Cyclic RGD Peptide
  • 11.2.1 RGD Sequence, Integrins, and Receptor Selectivity -- 11.2.2 Concept of Spatial Screening in Cyclic RGD Peptides -- 11.2.3 Conformational Aspects and Selectivity of c(RGDfV) -- 11.2.4 Pharmacophoric Requirements of c(RGDfV) to Bind avb3 -- 11.3 N-Methylation of c(RGDfV): Cilengitide and Beyond -- 11.3.1 Concept of N-Methylation -- 11.3.2 N-Methyl Scan of c(RGDV): Synthesis, Biological Activity, and Structural Considerations of Cilengitide -- 11.3.3 Beyond Cilengitide: di-N-Methylated Analogs of c(RGDfV) and avb3 Selectivity -- 11.4 isoDGR Sequence as a New Integrin-Binding Motif -- 11.4.1 Formation of isoAsp Residues in Peptides and Proteins -- 11.4.2 NGR Deamidation to isoDGR Yields a New Integrin-Binding Motif -- 11.4.3 Design of Cyclic Peptides Containing the isoDGR Motif as New Integrin Antagonists -- 11.4.4 Receptor Selectivity of Cyclic isoDGR Peptides -- 11.5 Conclusions -- References -- 12 REPLACE Strategy for Generating Non-ATP-Competitive Inhibitors of Cell Cycle Protein Kinases -- 12.1 Introduction -- 12.2 Inhibition of CDKs Through the Cyclin Groove -- 12.3 Inhibitors of PLKs -- 12.3.1 PB Domain -- 12.4 Conclusions -- References -- Index
Control code
EBC1117395
Dimensions
unknown
Edition
2nd ed.
Extent
1 online resource (338 pages)
Form of item
online
Isbn
9783527648238
Media category
computer
Media MARC source
rdamedia
Media type code
c
Note
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Sound
unknown sound
Specific material designation
remote
System control number
  • (MiAaPQ)EBC1117395
  • (Au-PeEL)EBL1117395
  • (CaPaEBR)ebr10653853
  • (CaONFJC)MIL430613
  • (OCoLC)827208435
Label
Protein-Protein Interactions in Drug Discovery
Link
http://ebookcentral.proquest.com/lib/multco/detail.action?docID=1117395
Publication
Copyright
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Protein-Protein Interactions in Drug Discovery -- Contents -- List of Contributors -- Preface -- A Personal Foreword -- 1 Protein-Protein Interactions: An Overview -- 1.1 Introduction -- 1.2 Role of PPIs in Human Physiology -- 1.3 Regulation of PPIs -- 1.4 Structural Features of PPI Interfaces -- 1.4.1 iNOS Homodimer -- 1.4.2 b-Catenin/Tcf4 Complex -- 1.4.3 LEDGF/HIV-IN Complex -- 1.4.4 HPV E1/E2 Complex -- 1.4.5 IFN-a/IFNAR Complex -- 1.4.6 TNF-a Trimer -- 1.5 Identification of PPI Inhibitors -- 1.6 Conclusions and Outlook -- References -- 2 Prediction of Intra- and Interspecies Protein-Protein Interactions Facilitating Systems Biology Studies -- 2.1 Introduction: Relevance of Interactome Studies to Disease and Drug Discovery -- 2.2 Our Current Knowledge of Interactomes Identified from Experiments is Incomplete -- 2.3 Reliability of Interactions Identified Experimentally -- 2.4 Computational Methods for PPI Prediction -- 2.4.1 Conservation of Gene Neighborhood -- 2.4.2 Gene Fusion -- 2.4.3 Sequence-Based Coevolution -- 2.4.4 Phylogenetic Profiling -- 2.4.5 Gene Expression -- 2.4.6 Structural Similarity -- 2.4.7 Integration Approaches -- 2.5 Sources of Biological Data in Use to Predict PPIs -- 2.6 Survey of Current Interactomes -- 2.6.1 Human Intraspecies Interactomes -- 2.6.2 Bacteria Intraspecies Interactomes -- 2.6.2.1 High-Throughput Experimental Approaches to Identify Intraspecies Bacterial Interactions -- 2.6.2.2 Modeling Intraspecies Bacterial Interactions -- 2.6.3 Bacteria-Human Interspecies Interactomes -- 2.6.3.1 Experimental Approaches to Identify Bacteria-Human PPIs -- 2.6.3.2 Modeling Bacteria-Human PPIs -- 2.6.4 Non-PPI Intraspecies Bacterial and Bacteria-Human Interspecies Interactome Models -- 2.6.5 Virus-Human Interspecies Interactomes -- References
  • 3 Modulators of Protein-Protein Interactions: Importance of Three-Dimensionality -- 3.1 Introduction -- 3.2 Study -- 3.3 Discussion -- 3.4 Summary -- References -- 4 A Leap into the Chemical Space of Protein-Protein Interaction Inhibitors -- 4.1 Introduction -- 4.2 Types of Interaction -- 4.3 Properties of the Interface -- 4.4 Orthosteric versus Allosteric Modulation -- 4.5 Leap into the iPPI Chemical Space -- 4.5.1 Seminal Works -- 4.5.2 Road to a Rationalization of the iPPI Chemical Space -- 4.6 Case Study -- 4.6.1 Visualizing the iPPI Chemical Space -- 4.6.2 iPPI versus ADME/Tox Properties -- 4.6.3 iPPI versus Aromaticity -- 4.6.4 iPPI versus Chemical Complexity -- 4.6.5 iPPI versus Molecular Shape -- 4.6.6 iPPI versus Potency -- 4.7 Conclusions -- References -- 5 Interactive Technologies for Leveraging the Known Chemistry of Anchor Residues to Disrupt Protein Interactions -- 5.1 Introduction -- 5.2 Druggable Sites in PPIs -- 5.3 Structure-Based Library Design - A Powerful Alternative to High-Throughput Screening -- 5.4 New MCR Chemistry to Design PPI Antagonists -- 5.5 Virtual Screening -- 5.6 New Interactive Modeling Techniques for Medicinal Chemists -- 5.7 New Ideas: Hit Rate Validation of Anchor-Centered Screening of p53/MDM2/4 -- 5.8 Summary -- References -- 6 SH3 Domains as Drug Targets -- 6.1 Introduction -- 6.2 Structure -- 6.3 Variability -- 6.4 SH3 Binding Motifs -- 6.4.1 Classical Binding Motifs -- 6.4.2 Tyrosine-Containing Motifs -- 6.4.3 RxxK Motif -- 6.4.4 Other Binding Motifs from Proteomic Screens -- 6.4.5 Tertiary Interactions -- 6.5 Selectivity -- 6.6 Drug Target Selection -- 6.7 Inhibition Strategies: Peptide and Peptoid Inhibitors -- 6.7.1 Peptide Ligands -- 6.7.2 Combinatorial Approaches -- 6.7.3 Peptide Dimers -- 6.7.4 Constrained Peptides -- 6.7.5 N-Substituted Peptoids -- 6.8 Small-Molecule Inhibitors -- 6.9 Conclusions
  • References -- 7 p53/MDM2 Antagonists: Towards Nongenotoxic Anticancer Treatments -- 7.1 Introduction -- 7.2 p53/MDM2 PPI is Characterized by Many Cocrystal Structures -- 7.3 Nutlins: First-In-Class MDM2 Antagonists -- 7.4 Johnson & Johnson: Benzodiazepines -- 7.5 Amgen: Chromenotriazolopyrimidines & Piperidones -- 7.6 University of Michigan: Spirooxindole -- 7.7 University of Pittsburgh: Ugi Based Compounds -- 7.8 University of Newcastle: Some Scaffolds With No Structural Biology Information -- 7.9 Outlook -- References -- 8 Inhibition of LFA-1/ICAM Interaction for the Treatment of Autoimmune Diseases -- 8.1 Introduction -- 8.2 Integrin Structure and Activation -- 8.3 Direct Inhibition of the LFA-1/ICAM Interaction -- 8.4 Allosteric Inhibitors of the LFA-1/ICAM interaction - IDAS Site -- 8.4.1 Abbott/ICOS/Biogen Series -- 8.4.2 Boehringer Ingelheim/Tanabe Seiyaku/Bristol-Myers Squibb Series -- 8.5 Summary -- References -- 9 The PIF Pocket of AGC Kinases: A Target Site for Allosteric Modulators and Protein-Protein Interaction Inhibitors -- 9.1 Introduction -- 9.2 Discovery and Physiological Functions of the PIF Pocket -- 9.3 Properties of the PIF Pocket Relevant to Drug Development -- 9.3.1 The PIF Pocket Offers the Potential to Develop Highly Selective Ligands -- 9.3.2 Molecular Interactions of the Natural HM Peptide Ligands -- 9.3.3 Allosteric Mechanism of the PIF Pocket -- 9.3.4 Structural Plasticity of the PIF Pocket -- 9.4 Small-Molecule PIF Pocket Ligands -- 9.4.1 Allosteric Activators and PPI Inhibitors of PDK1 -- 9.4.2 Identification of First Hit Compounds Using a Pharmacophore-Based Screening Approach -- 9.4.3 Current State of Research on PIF Pocket-Directed PDK1 Modulators -- 9.4.4 Allosteric Inhibitors -- 9.5 Potential Supportive Effects Enhancing the Cellular Activity of PIF Pocket-Binding Modulators -- 9.5.1 Allosteric Activators of PDK1
  • 9.5.2 PIF Pocket-Directed Inhibitors of AGC Kinases -- 9.6 Conclusions -- 9.6.1 Is the PIF Pocket a Druggable Site? -- 9.6.2 General Medicinal Chemistry Aspects and Outlook -- References -- 10 Retosiban and Epelsiban: Potent and Selective Orally Available Oxytocin Antagonists -- 10.1 Introduction -- 10.2 Aryl-2,5-DKP Template Discovery and Initial Structure-Activity Relationship Studies -- 10.3 Synthesis of the RRR and RRS 6-Indanyl-3-isobutyl-7-aryl-2,5-DKP Secondary Amides -- 10.4 Comparison of Crystal Structures of Oxytocin and 2,5-DKPs -- 10.5 Pharmacokinetics and Property-Based Design -- 10.6 In Vivo Potency of 2',4'-Diflurophenyl Dimethylamide -- 10.7 Synthesis of Tertiary Amides -- 10.7.1 Synthesis of Five- and Six-Membered Heterocyclic 2,5-DKPs -- 10.8 Summary of Lead Oxytocin Antagonist 2',4'-Diflurophenyl Dimethylamide 22 -- 10.9 Further Modifications, Five- and Six-Membered Heterocyclic Derivatives -- 10.10 Five-Membered Heterocyclic Derivatives and Retosiban -- 10.10.1 Oxytocin Antagonist Activity and Selectivity versus Human Vasopressin Receptors -- 10.10.2 In Vivo Potency and Synthesis -- 10.11 Summary of Lead Oxytocin Antagonist Retosiban 56 -- 10.12 Six-Membered Heterocyclic Derivatives and Epelsiban -- 10.12.1 Monosubstituted Pyridyl isoButyl Derivatives -- 10.12.2 Modification of isoButyl in 6'-MePyridyl Derivatives -- 10.12.3 Dimethylpyridyl (S)-sec-Butyl Amides -- 10.12.4 Further Evaluation of 2',6'-Dimethyl-30-pyridine Morpholine Amide -- 10.13 Summary of Lead Oxytocin Antagonist Epelsiban 77 -- 10.14 Comparison of Lead Compounds -- 10.15 Conclusions -- References -- 11 Peptidic Inhibitors of Protein-Protein Interactions for Cell Adhesion Receptors: RGD Peptides and Beyond -- 11.1 Introduction -- 11.2 From the Discovery of the RGD Motif in FN to the First Selective Cyclic RGD Peptide
  • 11.2.1 RGD Sequence, Integrins, and Receptor Selectivity -- 11.2.2 Concept of Spatial Screening in Cyclic RGD Peptides -- 11.2.3 Conformational Aspects and Selectivity of c(RGDfV) -- 11.2.4 Pharmacophoric Requirements of c(RGDfV) to Bind avb3 -- 11.3 N-Methylation of c(RGDfV): Cilengitide and Beyond -- 11.3.1 Concept of N-Methylation -- 11.3.2 N-Methyl Scan of c(RGDV): Synthesis, Biological Activity, and Structural Considerations of Cilengitide -- 11.3.3 Beyond Cilengitide: di-N-Methylated Analogs of c(RGDfV) and avb3 Selectivity -- 11.4 isoDGR Sequence as a New Integrin-Binding Motif -- 11.4.1 Formation of isoAsp Residues in Peptides and Proteins -- 11.4.2 NGR Deamidation to isoDGR Yields a New Integrin-Binding Motif -- 11.4.3 Design of Cyclic Peptides Containing the isoDGR Motif as New Integrin Antagonists -- 11.4.4 Receptor Selectivity of Cyclic isoDGR Peptides -- 11.5 Conclusions -- References -- 12 REPLACE Strategy for Generating Non-ATP-Competitive Inhibitors of Cell Cycle Protein Kinases -- 12.1 Introduction -- 12.2 Inhibition of CDKs Through the Cyclin Groove -- 12.3 Inhibitors of PLKs -- 12.3.1 PB Domain -- 12.4 Conclusions -- References -- Index
Control code
EBC1117395
Dimensions
unknown
Edition
2nd ed.
Extent
1 online resource (338 pages)
Form of item
online
Isbn
9783527648238
Media category
computer
Media MARC source
rdamedia
Media type code
c
Note
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Sound
unknown sound
Specific material designation
remote
System control number
  • (MiAaPQ)EBC1117395
  • (Au-PeEL)EBL1117395
  • (CaPaEBR)ebr10653853
  • (CaONFJC)MIL430613
  • (OCoLC)827208435

Library Locations

  • Albina LibraryBorrow it
    3605 NE 15th Avenue, Portland, OR, 97212, US
    45.549039 -122.650525
  • Belmont LibraryBorrow it
    1038 SE César E. Chávez Boulevard, Portland, OR, 97214, US
    45.515217 -122.622669
  • Capitol Hill LibraryBorrow it
    10723 SW Capitol Highway, Portland, OR, 97219, US
    45.448003 -122.725422
  • Central LibraryBorrow it
    801 SW 10th Avenue, Portland, OR, 97205, US
    45.519098 -122.682899
  • Fairview-Columbia LibraryBorrow it
    1520 NE Village Street, Fairview, OR, 97024, US
    45.532283 -122.439336
  • Gregory Heights LibraryBorrow it
    7921 NE Sandy Boulevard, Portland, OR, 97213, US
    45.551662 -122.581264
  • Gresham LibraryBorrow it
    385 NW Miller Avenue, Gresham, OR, 97030, US
    45.500070 -122.433041
  • Hillsdale LibraryBorrow it
    1525 SW Sunset Boulevard, Portland, OR, 97239, US
    45.479852 -122.694013
  • Holgate LibraryBorrow it
    7905 SE Holgate Boulevard, Portland, OR, 97206, US
    45.490548 -122.582218
  • Hollywood LibraryBorrow it
    4040 NE Tillamook Street, Portland, OR, 97212, US
    45.537544 -122.621237
  • Isom BuildingBorrow it
    205 NE Russell Street , Portland, OR, 97212, US
    45.541222 -122.663268
  • Kenton LibraryBorrow it
    8226 N Denver Avenue, Portland, OR, 97217, US
    45.582857 -122.686379
  • Midland LibraryBorrow it
    805 SE 122nd Avenue, Portland, OR, 97233, US
    45.516683 -122.538488
  • North Portland LibraryBorrow it
    512 N Killingsworth Street, Portland, OR, 97217, US
    45.562454 -122.671507
  • Northwest LibraryBorrow it
    2300 NW Thurman Street, Portland, OR, 97210, US
    45.535316 -122.699254
  • Rockwood LibraryBorrow it
    17917 SE Stark Street, Portland, OR, 97233, US
    45.519541 -122.479013
  • Sellwood-Moreland LibraryBorrow it
    7860 SE 13th Avenue, Portland, OR, 97202, US
    45.467703 -122.652639
  • St. Johns LibraryBorrow it
    7510 N Charleston Avenue, Portland, OR, 97203, US
    45.590046 -122.751043
  • The Title Wave Used BookstoreBorrow it
    216 NE Knott Street, Portland, OR, 97212, US
    45.541647 -122.663075
  • Troutdale LibraryBorrow it
    2451 SW Cherry Park Road, Troutdale, OR, 97060, US
    45.529595 -122.409662
  • Woodstock LibraryBorrow it
    6008 SE 49th Avenue, Portland, OR, 97206, US
    45.478961 -122.612079
Processing Feedback ...