The Resource Advances in Thermal Energy Storage Systems : Methods and Applications

Advances in Thermal Energy Storage Systems : Methods and Applications

Label
Advances in Thermal Energy Storage Systems : Methods and Applications
Title
Advances in Thermal Energy Storage Systems
Title remainder
Methods and Applications
Creator
Contributor
Subject
Genre
Language
eng
Summary
Thermal energy storage (TES) technologies store thermal energy (both heat and cold) for later use as required, rather than at the time of production. They are therefore important counterparts to various intermittent renewable energy generation methods and also provide a way of valorising waste process heat and reducing the energy demand of buildings. This book provides an authoritative overview of this key area. Part one reviews sensible heat storage technologies. Part two covers latent and thermochemical heat storage respectively. The final section addresses applications in heating and energy systems. Reviews sensible heat storage technologies, including the use of water, molten salts, concrete and boreholes Describes latent heat storage systems and thermochemical heat storage Includes information on the monitoring and control of thermal energy storage systems, and considers their applications in residential buildings, power plants and industry
Member of
Cataloging source
MiAaPQ
http://library.link/vocab/creatorName
Cabeza, Luisa F
LC call number
TJ260 -- .C33 2015eb
Literary form
non fiction
Nature of contents
dictionaries
http://library.link/vocab/relatedWorkOrContributorName
ProQuest (Firm)
Series statement
Woodhead Publishing Series in Energy Ser
http://library.link/vocab/subjectName
  • Engineering
  • Heat storage
  • Mechanical engineering
Label
Advances in Thermal Energy Storage Systems : Methods and Applications
Link
https://ebookcentral.proquest.com/lib/multco/detail.action?docID=1903770
Instantiates
Publication
Copyright
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Cover -- Advances in Thermal Energy Storage Systems: Methods and Applications -- Copyright -- Contents -- List of contributors -- Woodhead Publishing Series in Energy -- Preface -- 1 Introduction to thermal energy storage (TES) systems -- 1.1 Introduction -- 1.2 Basic thermodynamics of energy storage -- 1.3 Overview of system types -- 1.4 Environmental impact and energy savings produced -- 1.5 Conclusions -- Acknowledgements -- References -- Part One Sensible heat storage systems -- 2 Using water for heat storage in thermal energy storage (TES) -- 2.1 Introduction -- 2.2 Principles of sensible heat storage systems involving water -- 2.3 Advances in the use of water for heat storage -- 2.4 Future trends -- 2.5 Sources of further information and advice -- References -- 3 Using molten salts and other liquid sensible storage media in thermal energy storage (TES) systems -- 3.1 Introduction -- 3.2 Principles of heat storage systems using molten salts and other liquid sensible storage media -- 3.3 Advances in molten salt storage -- 3.4 Advances in other liquid sensible storage media -- 3.5 Future trends -- 3.6 Sources of further information and advice -- Acknowledgements -- References -- 4 Using concrete and other solid storage media in thermal energy storage (TES) systems -- 4.1 Introduction -- 4.2 Principles of heat storage in solid media -- 4.3 State-of-the-art regenerator-type storage -- 4.4 Advances in the use of solid storage media for heat storage -- References -- 5 The use of aquifers as thermal energy storage (TES) systems -- 5.1 Introduction -- 5.2 Thermal sources -- 5.3 Aquifier thermal energy storage (ATES) -- 5.4 Thermal and geophysical aspects -- 5.5 ATES design -- 5.6 ATES cooling only case study: Richard Stockton College of New Jersey -- 5.7 ATES district heating and cooling with heat pumps case study: Eindhoven University of Technology
  • 5.8 ATES heating and cooling with de-icing case study: ATES plant at Stockholm Arlanda Airport -- 5.9 Conclusion -- Acknowledgements -- Bibliography -- 6 The use of borehole thermal energy storage (BTES) systems -- 6.1 Introduction -- 6.2 System integration of borehole thermal energy storage (BTES) -- 6.3 Investigation and design of BTES construction sites -- 6.4 Construction of borehole heat exchangers (BHEs) and BTES -- 6.5 Examples of BTES -- 6.6 Conclusion and future trends -- References -- 7 Analysis, modeling and simulation of underground thermal energy storage (UTES) systems -- 7.1 Introduction -- 7.2 Aquifer thermal energy storage (ATES) system -- 7.3 Borehole thermal energy storage (BTES) system -- 7.4 FEFLOW as a tool for simulating underground thermal energy storage (UTES) -- 7.5 Applications -- References -- Appendix: Nomenclature -- Part Two Latent heat storage systems -- 8 Using ice and snow in thermal energy storage systems -- 8.1 Introduction -- 8.2 Principles of thermal energy storage systems using snow and ice -- 8.3 Design and implementation of thermal energy storage using snow -- 8.4 Full-scale applications -- 8.5 Future trends -- References -- 9 Using solid-liquid phase change materials (PCMs) in thermal energy storage systems -- 9.1 Introduction -- 9.2 Principles of solid-liquid phase change materials (PCMs) -- 9.3 Shortcomings of PCMs in thermal energy storage systems -- 9.4 Methods to determine the latent heat capacity of PCMs -- 9.5 Methods to determine other physical and technical properties of PCMs -- 9.6 Comparison of physical and technical properties of key PCMs -- 9.7 Future trends -- References -- 10 Microencapsulation of phase change materials (PCMs) for thermal energy storage systems -- 10.1 Introduction -- 10.2 Microencapsulation of phase change materials (PCMs) -- 10.3 Shape-stabilized PCMs -- References
  • 11 Design of latent heat storage systems using phase change materials (PCMs) -- 11.1 Introduction -- 11.2 Requirements and considerations for the design -- 11.3 Design methodologies -- 11.4 Applications of latent heat storage systems incorporating PCMs -- 11.5 Future trends -- References -- 12 Modelling of heat transfer in phase change materials (PCMs) for thermal energy storage systems -- 12.1 Introduction -- 12.2 Inherent physical phenomena in phase change materials (PCMs) -- 12.3 Modelling methods and approaches for the simulation of heat transfer in PCMs for thermal energy storage -- 12.4 Examples of modelling applications -- 12.5 Future trends -- 12.6 Sources of further information and advice -- References -- 13 Integrating phase change materials (PCMs) in thermal energy storage systems for buildings -- 13.1 Introduction -- 13.2 Integration of phase change materials (PCMs) into the building envelope: physical considerations and heuristic arguments -- 13.3 Organic and inorganic PCMs used in building walls -- 13.4 PCM containment -- 13.5 Measurement of the thermal properties of PCM and PCM integrated in building walls -- 13.6 Experimental studies -- 13.7 Numerical studies -- 13.8 Conclusions -- References -- Part Three Thermochemical heat storage systems -- 14 Using thermochemical reactions in thermal energy storage systems -- 14.1 Introduction -- 14.2 Applications of reversible gas-gas reactions -- 14.3 Applications of reversible gas-solid reactions -- 14.4 Conclusion -- References -- 15 Modeling thermochemical reactions in thermal energy storage systems -- 15.1 Introduction -- 15.2 Grain model technique (Mampel's approach) -- 15.3 Reactor model technique (continuum approach) -- 15.4 Molecular simulation methods: quantum chemical simulations (DFT) -- 15.5 Molecular simulation methods: statistical mechanics
  • 15.6 Molecular simulation methods: molecular dynamics (MD) -- 15.7 Properties estimation from molecular dynamics simulation -- 15.8 Examples -- 15.9 Conclusion and future trends -- Acknowledgements -- References -- Part Four Systems operation and applications -- 16 Monitoring and control of thermal energy storage systems -- 16.1 Introduction -- 16.2 Overview of state-of-the-art monitoring and control of thermal energy storage systems -- 16.3 Stand-alone control and monitoring of heating devices -- 16.4 Data logging and heat metering of heating devices -- 16.5 Future trends in the monitoring and control of thermal storage systems -- 16.6 Sources of further information and advice -- References -- 17 Thermal energy storage systems for heating and hot water in residential buildings -- 17.1 Introduction -- 17.2 Requirements for thermal energy storage in individual residential buildings -- 17.3 Sensible heat storage for space heating in individual residential buildings -- 17.4 Latent and sorption heat storage for space heating in individual residential buildings -- 17.5 Thermal energy storage for domestic hot water and combined systems in individual residential buildings -- 17.6 Conclusions and future trends -- References -- 18 Thermal energy storage systems for district heating and cooling -- 18.1 Introduction -- 18.2 District heating and cooling overview -- 18.3 Advances in applications of thermal energy storage systems -- 18.4 Future trends -- 18.5 Sources of further information and advice -- References -- 19 Thermal energy storage (TES) systems using heat from waste -- 19.1 Introduction -- 19.2 Generation of waste process heat in different industries -- 19.3 Application of thermal energy storage (TES) for valorization of waste process heat -- 19.4 Conclusions -- References
  • 20 Thermal energy storage (TES) systems for cogeneration and trigeneration systems -- 20.1 Introduction -- 20.2 Overview of cogeneration and trigeneration systems -- 20.3 Design of thermal energy storage for cogeneration and trigeneration systems -- 20.4 Implementation of thermal energy storage in cogeneration and trigeneration systems -- 20.5 Future trends -- 20.6 Conclusion -- 20.7 Sources of further information and advice -- References -- 21 Thermal energy storage systems for concentrating solar power (CSP) technology -- 21.1 Introduction -- 21.2 Commercial concentrating solar power (CSP) plants with integrated storage capacity -- 21.3 Research and development in CSP storage systems -- 21.4 Conclusion -- References -- 22 Thermal energy storage (TES) systems for greenhouse technology -- 22.1 Introduction -- 22.2 Greenhouse heating and cooling -- 22.3 Thermal energy storage (TES) technologies for greenhouse systems -- 22.4 Case studies for TES in greenhouses -- 22.5 Conclusions and future trends -- References -- 23 Thermal energy storage (TES) systems for cooling in residential buildings -- 23.1 Introduction -- 23.2 Sustainable cooling through passive systems in building envelopes -- 23.3 Sustainable cooling through phase change material (PCM) in active systems -- 23.4 Sustainable cooling through sorption systems -- 23.5 Sustainable cooling through seasonal storage -- 23.6 Conclusions -- Acknowledgements -- References -- Index
Control code
EBC1903770
Dimensions
unknown
Extent
1 online resource (623 pages)
Form of item
online
Isbn
9781782420965
Media category
computer
Media MARC source
rdamedia
Media type code
c
Note
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Sound
unknown sound
Specific material designation
remote
System control number
  • (MiAaPQ)EBC1903770
  • (Au-PeEL)EBL1903770
  • (CaPaEBR)ebr10985369
  • (CaONFJC)MIL659408
  • (OCoLC)899157532
Label
Advances in Thermal Energy Storage Systems : Methods and Applications
Link
https://ebookcentral.proquest.com/lib/multco/detail.action?docID=1903770
Publication
Copyright
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Cover -- Advances in Thermal Energy Storage Systems: Methods and Applications -- Copyright -- Contents -- List of contributors -- Woodhead Publishing Series in Energy -- Preface -- 1 Introduction to thermal energy storage (TES) systems -- 1.1 Introduction -- 1.2 Basic thermodynamics of energy storage -- 1.3 Overview of system types -- 1.4 Environmental impact and energy savings produced -- 1.5 Conclusions -- Acknowledgements -- References -- Part One Sensible heat storage systems -- 2 Using water for heat storage in thermal energy storage (TES) -- 2.1 Introduction -- 2.2 Principles of sensible heat storage systems involving water -- 2.3 Advances in the use of water for heat storage -- 2.4 Future trends -- 2.5 Sources of further information and advice -- References -- 3 Using molten salts and other liquid sensible storage media in thermal energy storage (TES) systems -- 3.1 Introduction -- 3.2 Principles of heat storage systems using molten salts and other liquid sensible storage media -- 3.3 Advances in molten salt storage -- 3.4 Advances in other liquid sensible storage media -- 3.5 Future trends -- 3.6 Sources of further information and advice -- Acknowledgements -- References -- 4 Using concrete and other solid storage media in thermal energy storage (TES) systems -- 4.1 Introduction -- 4.2 Principles of heat storage in solid media -- 4.3 State-of-the-art regenerator-type storage -- 4.4 Advances in the use of solid storage media for heat storage -- References -- 5 The use of aquifers as thermal energy storage (TES) systems -- 5.1 Introduction -- 5.2 Thermal sources -- 5.3 Aquifier thermal energy storage (ATES) -- 5.4 Thermal and geophysical aspects -- 5.5 ATES design -- 5.6 ATES cooling only case study: Richard Stockton College of New Jersey -- 5.7 ATES district heating and cooling with heat pumps case study: Eindhoven University of Technology
  • 5.8 ATES heating and cooling with de-icing case study: ATES plant at Stockholm Arlanda Airport -- 5.9 Conclusion -- Acknowledgements -- Bibliography -- 6 The use of borehole thermal energy storage (BTES) systems -- 6.1 Introduction -- 6.2 System integration of borehole thermal energy storage (BTES) -- 6.3 Investigation and design of BTES construction sites -- 6.4 Construction of borehole heat exchangers (BHEs) and BTES -- 6.5 Examples of BTES -- 6.6 Conclusion and future trends -- References -- 7 Analysis, modeling and simulation of underground thermal energy storage (UTES) systems -- 7.1 Introduction -- 7.2 Aquifer thermal energy storage (ATES) system -- 7.3 Borehole thermal energy storage (BTES) system -- 7.4 FEFLOW as a tool for simulating underground thermal energy storage (UTES) -- 7.5 Applications -- References -- Appendix: Nomenclature -- Part Two Latent heat storage systems -- 8 Using ice and snow in thermal energy storage systems -- 8.1 Introduction -- 8.2 Principles of thermal energy storage systems using snow and ice -- 8.3 Design and implementation of thermal energy storage using snow -- 8.4 Full-scale applications -- 8.5 Future trends -- References -- 9 Using solid-liquid phase change materials (PCMs) in thermal energy storage systems -- 9.1 Introduction -- 9.2 Principles of solid-liquid phase change materials (PCMs) -- 9.3 Shortcomings of PCMs in thermal energy storage systems -- 9.4 Methods to determine the latent heat capacity of PCMs -- 9.5 Methods to determine other physical and technical properties of PCMs -- 9.6 Comparison of physical and technical properties of key PCMs -- 9.7 Future trends -- References -- 10 Microencapsulation of phase change materials (PCMs) for thermal energy storage systems -- 10.1 Introduction -- 10.2 Microencapsulation of phase change materials (PCMs) -- 10.3 Shape-stabilized PCMs -- References
  • 11 Design of latent heat storage systems using phase change materials (PCMs) -- 11.1 Introduction -- 11.2 Requirements and considerations for the design -- 11.3 Design methodologies -- 11.4 Applications of latent heat storage systems incorporating PCMs -- 11.5 Future trends -- References -- 12 Modelling of heat transfer in phase change materials (PCMs) for thermal energy storage systems -- 12.1 Introduction -- 12.2 Inherent physical phenomena in phase change materials (PCMs) -- 12.3 Modelling methods and approaches for the simulation of heat transfer in PCMs for thermal energy storage -- 12.4 Examples of modelling applications -- 12.5 Future trends -- 12.6 Sources of further information and advice -- References -- 13 Integrating phase change materials (PCMs) in thermal energy storage systems for buildings -- 13.1 Introduction -- 13.2 Integration of phase change materials (PCMs) into the building envelope: physical considerations and heuristic arguments -- 13.3 Organic and inorganic PCMs used in building walls -- 13.4 PCM containment -- 13.5 Measurement of the thermal properties of PCM and PCM integrated in building walls -- 13.6 Experimental studies -- 13.7 Numerical studies -- 13.8 Conclusions -- References -- Part Three Thermochemical heat storage systems -- 14 Using thermochemical reactions in thermal energy storage systems -- 14.1 Introduction -- 14.2 Applications of reversible gas-gas reactions -- 14.3 Applications of reversible gas-solid reactions -- 14.4 Conclusion -- References -- 15 Modeling thermochemical reactions in thermal energy storage systems -- 15.1 Introduction -- 15.2 Grain model technique (Mampel's approach) -- 15.3 Reactor model technique (continuum approach) -- 15.4 Molecular simulation methods: quantum chemical simulations (DFT) -- 15.5 Molecular simulation methods: statistical mechanics
  • 15.6 Molecular simulation methods: molecular dynamics (MD) -- 15.7 Properties estimation from molecular dynamics simulation -- 15.8 Examples -- 15.9 Conclusion and future trends -- Acknowledgements -- References -- Part Four Systems operation and applications -- 16 Monitoring and control of thermal energy storage systems -- 16.1 Introduction -- 16.2 Overview of state-of-the-art monitoring and control of thermal energy storage systems -- 16.3 Stand-alone control and monitoring of heating devices -- 16.4 Data logging and heat metering of heating devices -- 16.5 Future trends in the monitoring and control of thermal storage systems -- 16.6 Sources of further information and advice -- References -- 17 Thermal energy storage systems for heating and hot water in residential buildings -- 17.1 Introduction -- 17.2 Requirements for thermal energy storage in individual residential buildings -- 17.3 Sensible heat storage for space heating in individual residential buildings -- 17.4 Latent and sorption heat storage for space heating in individual residential buildings -- 17.5 Thermal energy storage for domestic hot water and combined systems in individual residential buildings -- 17.6 Conclusions and future trends -- References -- 18 Thermal energy storage systems for district heating and cooling -- 18.1 Introduction -- 18.2 District heating and cooling overview -- 18.3 Advances in applications of thermal energy storage systems -- 18.4 Future trends -- 18.5 Sources of further information and advice -- References -- 19 Thermal energy storage (TES) systems using heat from waste -- 19.1 Introduction -- 19.2 Generation of waste process heat in different industries -- 19.3 Application of thermal energy storage (TES) for valorization of waste process heat -- 19.4 Conclusions -- References
  • 20 Thermal energy storage (TES) systems for cogeneration and trigeneration systems -- 20.1 Introduction -- 20.2 Overview of cogeneration and trigeneration systems -- 20.3 Design of thermal energy storage for cogeneration and trigeneration systems -- 20.4 Implementation of thermal energy storage in cogeneration and trigeneration systems -- 20.5 Future trends -- 20.6 Conclusion -- 20.7 Sources of further information and advice -- References -- 21 Thermal energy storage systems for concentrating solar power (CSP) technology -- 21.1 Introduction -- 21.2 Commercial concentrating solar power (CSP) plants with integrated storage capacity -- 21.3 Research and development in CSP storage systems -- 21.4 Conclusion -- References -- 22 Thermal energy storage (TES) systems for greenhouse technology -- 22.1 Introduction -- 22.2 Greenhouse heating and cooling -- 22.3 Thermal energy storage (TES) technologies for greenhouse systems -- 22.4 Case studies for TES in greenhouses -- 22.5 Conclusions and future trends -- References -- 23 Thermal energy storage (TES) systems for cooling in residential buildings -- 23.1 Introduction -- 23.2 Sustainable cooling through passive systems in building envelopes -- 23.3 Sustainable cooling through phase change material (PCM) in active systems -- 23.4 Sustainable cooling through sorption systems -- 23.5 Sustainable cooling through seasonal storage -- 23.6 Conclusions -- Acknowledgements -- References -- Index
Control code
EBC1903770
Dimensions
unknown
Extent
1 online resource (623 pages)
Form of item
online
Isbn
9781782420965
Media category
computer
Media MARC source
rdamedia
Media type code
c
Note
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2018. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Sound
unknown sound
Specific material designation
remote
System control number
  • (MiAaPQ)EBC1903770
  • (Au-PeEL)EBL1903770
  • (CaPaEBR)ebr10985369
  • (CaONFJC)MIL659408
  • (OCoLC)899157532

Library Locations

  • Albina LibraryBorrow it
    3605 NE 15th Avenue, Portland, OR, 97212, US
    45.549039 -122.650525
  • Belmont LibraryBorrow it
    1038 SE César E. Chávez Boulevard, Portland, OR, 97214, US
    45.515217 -122.622669
  • Capitol Hill LibraryBorrow it
    10723 SW Capitol Highway, Portland, OR, 97219, US
    45.448003 -122.725422
  • Central LibraryBorrow it
    801 SW 10th Avenue, Portland, OR, 97205, US
    45.519098 -122.682899
  • Fairview-Columbia LibraryBorrow it
    1520 NE Village Street, Fairview, OR, 97024, US
    45.532283 -122.439336
  • Gregory Heights LibraryBorrow it
    7921 NE Sandy Boulevard, Portland, OR, 97213, US
    45.551662 -122.581264
  • Gresham LibraryBorrow it
    385 NW Miller Avenue, Gresham, OR, 97030, US
    45.500070 -122.433041
  • Hillsdale LibraryBorrow it
    1525 SW Sunset Boulevard, Portland, OR, 97239, US
    45.479852 -122.694013
  • Holgate LibraryBorrow it
    7905 SE Holgate Boulevard, Portland, OR, 97206, US
    45.490548 -122.582218
  • Hollywood LibraryBorrow it
    4040 NE Tillamook Street, Portland, OR, 97212, US
    45.537544 -122.621237
  • Isom BuildingBorrow it
    205 NE Russell Street , Portland, OR, 97212, US
    45.541222 -122.663268
  • Kenton LibraryBorrow it
    8226 N Denver Avenue, Portland, OR, 97217, US
    45.582857 -122.686379
  • Midland LibraryBorrow it
    805 SE 122nd Avenue, Portland, OR, 97233, US
    45.516683 -122.538488
  • North Portland LibraryBorrow it
    512 N Killingsworth Street, Portland, OR, 97217, US
    45.562454 -122.671507
  • Northwest LibraryBorrow it
    2300 NW Thurman Street, Portland, OR, 97210, US
    45.535316 -122.699254
  • Rockwood LibraryBorrow it
    17917 SE Stark Street, Portland, OR, 97233, US
    45.519541 -122.479013
  • Sellwood-Moreland LibraryBorrow it
    7860 SE 13th Avenue, Portland, OR, 97202, US
    45.467703 -122.652639
  • St. Johns LibraryBorrow it
    7510 N Charleston Avenue, Portland, OR, 97203, US
    45.590046 -122.751043
  • The Title Wave Used BookstoreBorrow it
    216 NE Knott Street, Portland, OR, 97212, US
    45.541647 -122.663075
  • Troutdale LibraryBorrow it
    2451 SW Cherry Park Road, Troutdale, OR, 97060, US
    45.529595 -122.409662
  • Woodstock LibraryBorrow it
    6008 SE 49th Avenue, Portland, OR, 97206, US
    45.478961 -122.612079
Processing Feedback ...